The diagram below shows a regular octagram and a regular octagon.
Given that A B = 2 − 1 cm and the area of △ E M T , [ E M T ] = 4 a b − c cm 2 , where a , b and c are positive integers and b is square-free , find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
In The Cartesian Plane, let E = ( 0 , 0 )
Note that A E = 2 2 − 2 and ∠ W A U = 4 5 ∘
∴ E = ( 0 , 0 ) , M = ( 0 . 5 , 2 1 − 2 ) , T = ( 2 − 1 , 1 − 2 )
The area of △ E M T = 2 1 ∣ ∣ ∣ ∣ ∣ 2 1 − 2 + 2 3 − 2 2 ∣ ∣ ∣ ∣ ∣ = 4 3 4 − 2 4 2
Because of symmetry, there is a circumcircle centered at Z inscribing the octagram C H M T V Q L E (two squares). Therefore, E Z = M Z = T Z = r , the radius of the circumcircle. By Pythagorean theorem , we have M T 2 = E H 2 + H T 2 . Since E H = H T = A B = 2 − 1 . ⟹ M T = 2 ( 2 − 1 ) = 2 − 2 = 2 r , ⟹ r = 2 2 − 2 .
Let M Y be the perpendicular from M to E T . Then, we note that the area of △ E M T ,
[ E M T ] = 2 1 × E T × M Y = 2 1 ( 2 r ) ( 2 r ) = 2 r 2 = 2 2 2 ( 2 − 2 ) 2 = 4 3 2 − 4 = 4 ( 3 2 − 4 ) 2 = 4 3 4 − 2 4 2
⟹ a + b + c = 3 4 + 2 4 + 2 = 6 0
Observe that E T = A B ∗ 2 and altitude of △ E M T dropped from M is 2 A B . This gives △ E M T = A B 2 4 2 = 4 3 2 − 4 = 4 3 4 − 2 4 2 .
E H T Q ≡ C M V L and they are square , Δ E F J ≡ Δ G H K ≡ Δ O T S ≡ Δ R Q N and they are isosceles right-angled triangles
Let E F = F C = C G = G H = H K = K M = M O = O T = T S = S V = V R = R Q = Q N = N L = L J = J E = x
Let F G = K O = R S = J N = y
{ 2 x + y = 2 − 1 2 x 2 = y 2 ⇒ ⎩ ⎨ ⎧ x = 2 3 2 − 4 y = 3 − 2 2
∠ T E M = 4 5 − 2 1 8 0 − ( 1 8 0 − 4 5 ) = 2 2 . 5 o , ∠ M T E = 4 5 + 2 1 8 0 − ( 1 8 0 − 4 5 ) = 6 7 . 5 o , ∠ E M T = 1 8 0 − 2 2 . 5 − 6 7 . 5 = 9 0 o
E M 2 = E G 2 + G M 2 − 2 cos ( 1 8 0 o − 4 5 o ) = 2 ( x + y ) 2 ( 1 − cos 1 3 5 o )
M T 2 = M O 2 + O T 2 − 2 cos ( 1 8 0 o − 4 5 o ) = 2 x 2 ( 1 − cos 1 3 5 o )
[ E M T ] = 2 E M × M T = 2 4 x 2 ( x + y ) 2 ( 1 − cos 1 3 5 o ) 2 = 4 3 4 − 2 4 2
⇒ a + b + c = 3 4 + 2 4 + 2 = 6 0
I just want to point out that the area can be further simplified to 4 3 2 − 4 .
Problem Loading...
Note Loading...
Set Loading...
I t i s c l e a r t h a t S q u a r e s E Q T H a n d C L V M b o t h h a v e s i d e s ( 2 − 1 ) a n d m a k e 4 5 o w i t h o n e a n o t h e r . S o d i a g o n a l o f o n e w i l l b e a t 9 0 o t o o n e p a i r o f s i d e s o f t h e o t h e r . I n p a r t i c u l a r d i a g o n a l E T ⊥ M V a n d = 2 ∗ ( 2 − 1 ) . L e t M V c u t E T a t Y . I t i s e a s y t o s e e t h a t Y i s t h e m i d p o i n t o f M V . ⟹ M Y = 2 1 ∗ ( 2 − 1 ) . A r e a E M T = 2 1 ∗ ( 2 ∗ ( 2 − 1 ) ) ∗ 2 1 ∗ ( 2 − 1 ) = 4 3 ∗ 2 − 4 = 4 3 4 − 2 4 2 = 4 a − b c a + b + c = 6 0 .