Octagram and octagon

Geometry Level 3

The diagram below shows a regular octagram and a regular octagon.

Given that A B = 2 1 cm AB = \sqrt{2}-1 \text{ cm} and the area of E M T \triangle EMT , [ E M T ] = a b c 4 cm 2 [EMT] = \dfrac{ a \sqrt{b} - c }{4} \text{ cm}^2 , where a a , b b and c c are positive integers and b b is square-free , find a + b + c a+b+c .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

I t i s c l e a r t h a t S q u a r e s E Q T H a n d C L V M b o t h h a v e s i d e s ( 2 1 ) a n d m a k e 4 5 o w i t h o n e a n o t h e r . S o d i a g o n a l o f o n e w i l l b e a t 9 0 o t o o n e p a i r o f s i d e s o f t h e o t h e r . I n p a r t i c u l a r d i a g o n a l E T M V a n d = 2 ( 2 1 ) . L e t M V c u t E T a t Y . I t i s e a s y t o s e e t h a t Y i s t h e m i d p o i n t o f M V . M Y = 1 2 ( 2 1 ) . A r e a E M T = 1 2 ( 2 ( 2 1 ) ) 1 2 ( 2 1 ) It ~is~ clear~that~Squares~ EQTH~and~CLVM~both~have~sides~(\sqrt2-1)~ and~make~45^o ~with~ one~another.\\ So~diagonal ~of~one ~will~be~at~90^o~to~one~pair~of~sides~of~the~other.\\ In ~particular~diagonal~ET \bot MV ~and~=\sqrt2*(\sqrt2-1). \\ Let~MV~cut~ET~at~Y.~It ~is ~easy~ to~ see~that~Y~is~the~midpoint~of~MV. \implies~MY=\frac 1 2 *(\sqrt2-1).\\ Area~ EMT=\frac 1 2* (\sqrt2*(\sqrt2-1))*\frac 1 2 *(\sqrt2-1)\\ = 3 2 4 4 = 34 24 2 4 = a b c 4 a + b + c = 60. =\dfrac{3*\sqrt2 - 4} 4=\dfrac{\sqrt{34-24\sqrt2} }4= \dfrac{\sqrt{a-b\sqrt c}} 4\\ a+b+c=\large \color{#D61F06}{60}.

In The Cartesian Plane, let E = ( 0 , 0 ) E=(0,0)

Note that A E = 2 2 2 AE=\dfrac{2-\sqrt{2}}{2} and W A U = 4 5 \angle WAU=45^\circ

E = ( 0 , 0 ) , M = ( 0.5 , 1 2 2 ) , T = ( 2 1 , 1 2 ) \therefore E=(0,0),M=\left(0.5,\dfrac{1-\sqrt{2}}{2}\right),T=(\sqrt{2}-1,1-\sqrt{2})

The area of E M T = 1 2 1 2 2 + 3 2 2 2 = 34 24 2 4 \triangle EMT=\dfrac{1}{2}\left|\dfrac{1-\sqrt{2}}{2}+\dfrac{3-2\sqrt{2}}{2}\right|=\dfrac{\sqrt{34-24\sqrt{2}}}{4}

Chew-Seong Cheong
Aug 28, 2017

Because of symmetry, there is a circumcircle centered at Z Z inscribing the octagram C H M T V Q L E CHMTVQLE (two squares). Therefore, E Z = M Z = T Z = r EZ = MZ = TZ = r , the radius of the circumcircle. By Pythagorean theorem , we have M T 2 = E H 2 + H T 2 MT^2 = EH^2+HT^2 . Since E H = H T = A B = 2 1 EH=HT=AB = \sqrt 2-1 . M T = 2 ( 2 1 ) = 2 2 = 2 r \implies MT = \sqrt 2 \left(\sqrt 2-1\right) = 2 - \sqrt 2 = 2r , r = 2 2 2 \implies r = \dfrac {2-\sqrt 2}2 .

Let M Y MY be the perpendicular from M M to E T ET . Then, we note that the area of E M T \triangle EMT ,

[ E M T ] = 1 2 × E T × M Y = 1 2 ( 2 r ) ( r 2 ) = r 2 2 = ( 2 2 ) 2 2 2 2 = 3 2 4 4 = ( 3 2 4 ) 2 4 = 34 24 2 4 \begin{aligned} [EMT] & = \frac 12 \times ET \times MY = \frac 12 (2r) \left(\frac r{\sqrt 2}\right) = \frac {r^2}{\sqrt 2} \\ & = \frac {\left(2-\sqrt 2\right)^2}{2^2\sqrt 2} = \frac {3\sqrt 2-4}4 = \frac {\sqrt{(3\sqrt 2-4)^2}}4 \\ & = \frac {\sqrt{34-24\sqrt 2}}4\end{aligned}

a + b + c = 34 + 24 + 2 = 60 \implies a+b+c = 34+24+2 = \boxed{60}

Maria Kozlowska
Aug 27, 2017

Observe that E T = A B 2 ET = AB * \sqrt{2} and altitude of E M T \triangle EMT dropped from M M is A B 2 \dfrac{AB}{2} . This gives E M T = A B 2 2 4 = 3 2 4 4 = 34 24 2 4 \triangle EMT = AB^2 \dfrac{\sqrt{2} }{4}=\dfrac {3 \sqrt{2}-4}{4}=\dfrac{\sqrt{34-24\sqrt{2}}}{4} .

Tommy Li
Aug 27, 2017

E H T Q C M V L EHTQ \equiv CMVL and they are square , Δ E F J Δ G H K Δ O T S Δ R Q N \Delta EFJ \equiv \Delta GHK \equiv \Delta OTS \equiv \Delta RQN and they are isosceles right-angled triangles

Let E F = F C = C G = G H = H K = K M = M O = O T = T S = S V = V R = R Q = Q N = N L = L J = J E = x EF =FC=CG=GH=HK=KM=MO=OT=TS=SV=VR=RQ=QN=NL=LJ=JE = x

Let F G = K O = R S = J N = y FG = KO = RS = JN = y

{ 2 x + y = 2 1 2 x 2 = y 2 { x = 3 2 4 2 y = 3 2 2 \begin{cases} 2x+y = \sqrt{2}-1 \\ 2x^2 = y^2 \end{cases} \Rightarrow \begin{cases} x = \dfrac{3\sqrt{2}-4}{2} \\ y = 3-2\sqrt{2} \end{cases}

T E M = 45 180 ( 180 45 ) 2 = 22. 5 o \angle TEM =45-\frac{180-(180-45)}{2} = 22.5^o , M T E = 45 + 180 ( 180 45 ) 2 = 67. 5 o \angle MTE = 45+\frac{180-(180-45)}{2} = 67.5^o , E M T = 180 22.5 67.5 = 9 0 o \angle EMT = 180-22.5-67.5 =90^o

E M 2 = E G 2 + G M 2 2 cos ( 18 0 o 4 5 o ) = 2 ( x + y ) 2 ( 1 cos 13 5 o ) EM^2 = EG^2+GM^2 -2\cos(180^o-45^o) = 2(x+y)^2(1-\cos135^o)

M T 2 = M O 2 + O T 2 2 cos ( 18 0 o 4 5 o ) = 2 x 2 ( 1 cos 13 5 o ) MT^2 = MO^2+OT^2 -2\cos(180^o-45^o) = 2x^2(1-\cos135^o)

[ E M T ] = E M × M T 2 = 4 x 2 ( x + y ) 2 ( 1 cos 13 5 o ) 2 2 = 34 24 2 4 [EMT] = \dfrac{EM\times MT}{2} = \dfrac{\sqrt{4x^2(x+y)^2(1-\cos135^o)^2}}{2} = \dfrac{\sqrt{34-24\sqrt{2}}}{4}

a + b + c = 34 + 24 + 2 = 60 \Rightarrow a+b+c = 34+24+2 = 60

I just want to point out that the area can be further simplified to 3 2 4 4 . \frac{3 \sqrt{2} - 4}{4}.

Jon Haussmann - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...