Octal Summation

Algebra Level 4

The roots of the equation x 3 x + 1 = 0 x^3 - x + 1 = 0 are A A , B B and C C . Find the value of A 8 + B 8 + C 8 A^8 + B^8 + C^8 .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let's manipulate the expression a little:

x 3 = x 1 x 8 = x 6 x 5 x 8 = x 3 ( x 3 x 2 ) x 8 = ( x 1 ) ( x 1 x 2 ) x 8 = 2 x 2 2 x x 3 1 x 8 = 2 x 2 2 x ( x 1 ) 1 x 8 = 2 x 2 3 x + 2 x^3=x-1 \\ x^8=x^6-x^5 \\ x^8=x^3(x^3-x^2) \\ x^8=(x-1)(x-1-x^2) \\ x^8=2x^2-2x-x^3-1 \\ x^8=2x^2-2x-(x-1)-1 \\ x^8=2x^2-3x+2

Now, by Vieta's formulas we know that A + B + C = 0 A+B+C=0 and A B + A C + B C = 1 AB+AC+BC=-1 , so

A 8 + B 8 + C 8 = 2 ( A 2 + B 2 + C 2 ) 3 ( A + B + C ) + 2 ( 3 ) A 8 + B 8 + C 8 = 2 ( ( A + B + C ) 2 2 ( A B + A C + B C ) ) 3 ( A + B + C ) + 6 A 8 + B 8 + C 8 = 2 ( ( 0 ) 2 2 ( 1 ) ) + 6 A 8 + B 8 + C 8 = 10 A^8+B^8+C^8=2(A^2+B^2+C^2)-3(A+B+C)+2(3) \\ A^8+B^8+C^8=2((A+B+C)^2-2(AB+AC+BC))-3(A+B+C)+6 \\ A^8+B^8+C^8=2((0)^2-2(-1))+6 \\ A^8+B^8+C^8=\boxed{10}

Yeah, we use a bit of Newton's Identities in the end to overkill the problem. :3

Prasun Biswas - 6 years, 3 months ago
Chew-Seong Cheong
Oct 22, 2019

By Vieta's formula , the Newton's sums or identities are S 1 = A + B + C = 0 S_1 = A+B+C = 0 , S 2 = A B + B C + C A = 1 S_2 = AB+BC+CA = -1 , and S 3 = A B C = 1 S_3=ABC = -1 . Let P n = A n + B n + C n P_n = A^n+B^n+C^n , where n n is a natural number. We need to find P 8 P_8 . Then we have:

P 1 = S 1 = 0 P 2 = S 1 P 1 2 S 2 = 0 2 ( 1 ) = 2 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 0 ( 1 ) ( 0 ) + 3 ( 1 ) = 3 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 = 0 + 2 0 = 2 P 5 = P 3 P 2 = 3 2 = 5 P 6 = P 4 P 3 = 2 + 3 = 5 P 8 = P 6 P 5 = 5 + 5 = 10 \begin{aligned} P_1 & = S_1 = 0 \\ P_2 & = S_1P_1 - 2S_2 = 0 -2(-1) = 2 \\ P_3 & = S_1P_2 - S_2P_1 + 3S_3 = 0 -(-1)(0) +3(-1) = -3 \\ P_4 & = S_1P_3 - S_2P_2 + S_3P_1 = 0 + 2-0 = 2 \\ P_5 & = P_3 - P_2 = -3-2=-5 \\ P_6 & = P_4 - P_3 = 2+3 =5 \\ \implies P_8 & = P_6-P_5 = 5+5 = \boxed{10} \end{aligned}

x 3 x + 1 = 0 x 3 = x 1 x 9 = x 3 3 x 2 + 3 x 1 x 8 = x 2 3 x + 3 1 x . . . . . ( 1 ) x^3-x+1=0 \\ x^3=x-1 \\ x^9=x^3-3x^2+3x-1 \\ x^8=x^2-3x+3-\dfrac{1}{x}.....(1) \\ ~~\\
Now, by Vieta's formulas we know that A+B+C=0 and AB+AC+BC=−1.
A 2 + B 2 + C 2 = 0 2 ( 2 ) = 2........ 1 A + 1 B + 1 C = 1. F r o m ( 1 ) A 8 + B 8 + C 8 = A 2 3 A + 3 1 A + B 2 3 B + 3 1 B + C 2 3 C + 3 1 C = A 2 + B 2 + C 2 3 ( A + B + C ) + 3 3 { 1 A + 1 B + 1 C } = 2 + 0 + 9 1 = 10 \therefore A^2+B^2+C^2= 0^2-(-2)=2........\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}= 1.\\From ~~(1)\therefore A^8+B^8+C^8\\=A^2-3A+3-\dfrac{1}{A}+B^2-3B+3-\dfrac{1}{B}+C^2-3C+3-\dfrac{1}{C}\\\large=A^2+B^2+C^2-3(A+B+C)+3*3-\left \{ \dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}\right \}\\= 2+0+9-1= \large \boxed{\color{#3D99F6}{ 10 }}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...