The roots of the equation x 3 − x + 1 = 0 are A , B and C . Find the value of A 8 + B 8 + C 8 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yeah, we use a bit of Newton's Identities in the end to overkill the problem. :3
By Vieta's formula , the Newton's sums or identities are S 1 = A + B + C = 0 , S 2 = A B + B C + C A = − 1 , and S 3 = A B C = − 1 . Let P n = A n + B n + C n , where n is a natural number. We need to find P 8 . Then we have:
P 1 P 2 P 3 P 4 P 5 P 6 ⟹ P 8 = S 1 = 0 = S 1 P 1 − 2 S 2 = 0 − 2 ( − 1 ) = 2 = S 1 P 2 − S 2 P 1 + 3 S 3 = 0 − ( − 1 ) ( 0 ) + 3 ( − 1 ) = − 3 = S 1 P 3 − S 2 P 2 + S 3 P 1 = 0 + 2 − 0 = 2 = P 3 − P 2 = − 3 − 2 = − 5 = P 4 − P 3 = 2 + 3 = 5 = P 6 − P 5 = 5 + 5 = 1 0
x
3
−
x
+
1
=
0
x
3
=
x
−
1
x
9
=
x
3
−
3
x
2
+
3
x
−
1
x
8
=
x
2
−
3
x
+
3
−
x
1
.
.
.
.
.
(
1
)
Now, by Vieta's formulas we know that A+B+C=0 and AB+AC+BC=−1.
∴
A
2
+
B
2
+
C
2
=
0
2
−
(
−
2
)
=
2
.
.
.
.
.
.
.
.
A
1
+
B
1
+
C
1
=
1
.
F
r
o
m
(
1
)
∴
A
8
+
B
8
+
C
8
=
A
2
−
3
A
+
3
−
A
1
+
B
2
−
3
B
+
3
−
B
1
+
C
2
−
3
C
+
3
−
C
1
=
A
2
+
B
2
+
C
2
−
3
(
A
+
B
+
C
)
+
3
∗
3
−
{
A
1
+
B
1
+
C
1
}
=
2
+
0
+
9
−
1
=
1
0
Problem Loading...
Note Loading...
Set Loading...
Let's manipulate the expression a little:
x 3 = x − 1 x 8 = x 6 − x 5 x 8 = x 3 ( x 3 − x 2 ) x 8 = ( x − 1 ) ( x − 1 − x 2 ) x 8 = 2 x 2 − 2 x − x 3 − 1 x 8 = 2 x 2 − 2 x − ( x − 1 ) − 1 x 8 = 2 x 2 − 3 x + 2
Now, by Vieta's formulas we know that A + B + C = 0 and A B + A C + B C = − 1 , so
A 8 + B 8 + C 8 = 2 ( A 2 + B 2 + C 2 ) − 3 ( A + B + C ) + 2 ( 3 ) A 8 + B 8 + C 8 = 2 ( ( A + B + C ) 2 − 2 ( A B + A C + B C ) ) − 3 ( A + B + C ) + 6 A 8 + B 8 + C 8 = 2 ( ( 0 ) 2 − 2 ( − 1 ) ) + 6 A 8 + B 8 + C 8 = 1 0