Odd and Even Summation

Calculus Level 4

3 2 4 5 4 6 + 7 6 8 9 8 10 + 11 10 12 = ? \large\dfrac3{2\cdot4}-\dfrac5{4\cdot6}+\dfrac7{6\cdot8}-\dfrac9{8\cdot10}+\dfrac{11}{10\cdot12}-\cdots=\, ?


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Dhawan
May 9, 2016

T h e g i v e n s u m m a t i o n i s e q u i v a l e n t t o : n = 1 ( 1 ) n + 1 × ( 2 n + 1 ) 2 n × ( 2 n + 2 ) = 1 4 n = 1 ( 1 ) n × ( 2 n + 1 ) n ( n + 1 ) = 1 4 n = 1 ( 1 ) n n + n + 1 n ( n + 1 ) = 1 4 n = 1 ( 1 ) n { 1 n + 1 + 1 n } = 1 4 { 1 1 + 1 2 1 2 1 3 + 1 3 . . . . . . . } [ T e l e s c o p i n g s e r i e s ] = 1 4 ( 1 ) = 0.25 The\quad given\quad summation\quad is\quad equivalent\quad to:\\ \sum _{ n=1 }^{ \infty }{ \frac { ({ -1) }^{ n+1 }\times \left( 2n+1 \right) }{ 2n\times (2n+2) } } \\ =\frac { 1 }{ 4 } \sum _{ n=1 }^{ \infty }{ \frac { { (-1) }^{ n }\times (2n+1) }{ n(n+1) } } \\ =\frac { 1 }{ 4 } \sum _{ n=1 }^{ \infty }{ { (-1) }^{ n }\frac { n+n+1 }{ n(n+1) } } \\ =\frac { 1 }{ 4 } \sum _{ n=1 }^{ \infty }{ { (-1) }^{ n }\left\{ \frac { 1 }{ n+1 } +\frac { 1 }{ n } \right\} } =\frac { 1 }{ 4 } \left\{ \frac { 1 }{ 1 } +\frac { 1 }{ 2 } -\frac { 1 }{ 2 } -\frac { 1 }{ 3 } +\frac { 1 }{ 3 } ....... \right\} \quad \left[ Telescoping\quad series \right] \\ =\frac { 1 }{ 4 } \left( 1 \right) =\boxed { 0.25 }

Moderator note:

Good observation. Nice twist of the telescoping series.

Rishabh Jain
May 9, 2016

Let the sum be C \mathfrak{C} . Multiply all numerators by 2 2 .

C = 1 2 ( 6 2 4 10 4 6 + 14 6 8 18 8 10 + ) \mathfrak C=\dfrac{1}{2}\left(\dfrac6{2\cdot4}-\dfrac{10}{4\cdot6}+\dfrac{14}{6\cdot8}-\dfrac{18}{8\cdot10}+\cdots\right)

We see numerators are sum of respective denominators so write them as 2 + 4 ; 4 + 6 ; 6 + 8 ; 2+4;4+6;6+8;\cdots respectively and break into fractions so that C \mathfrak C is:

C = 1 2 ( 2 + 4 2 4 4 + 6 4 6 + 6 + 8 6 8 8 + 10 8 10 + ) \mathfrak C=\dfrac{1}{2}\left(\dfrac{2+4}{2\cdot4}-\dfrac{4+6}{4\cdot6}+\dfrac{6+8}{6\cdot8}-\dfrac{8+10}{8\cdot10}+\cdots\right)

1 / 2 ( 1 2 + 1 4 1 4 1 6 + 1 6 + 1 8 ) \large 1/2\left(\dfrac{1}{2}+\color{#D61F06}{\dfrac{1}{4}-\dfrac{1}{4}}\color{#3D99F6}{-\dfrac{1}{6}+\dfrac{1}{6}}\color{teal}{+\dfrac{1}{8}}\cdots\right)

= 1 2 × ( 1 2 ) = 0.25 \Large =\dfrac12\times \left(\dfrac12\right)=\huge\boxed{0.25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...