Greengrocer C. Carrot wants to expose his oranges neatly for sale. Doing this he discovers that one orange is left over when he places them in groups of three. The same happens if he tries to place them in groups of 5, 7, or 9 oranges. Only when he makes groups of 11 oranges, it fits exactly.
The Question : How many oranges does the greengrocer have at least ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Solution to : O dd Oranges Assume the number of oranges is A. Then A-1 is divisible by 3, 5, 7, and 9. So, A-1 is a multiple of 5×7×9 = 315 (note: 9 is also a multiple of 3, so 3 must not be included!). We are looking for a value of N for which holds that 315×N + 1 is divisible by 11. After some trying it turns out that the smallest N for which this holds is N = 3. This means that the greengrocer has at least 946 oranges.