Odd Summation

Geometry Level 2

θ = 1 89 ( log e ( sec θ ) log e ( csc θ ) ) = ? \large \sum _{ \theta =1 }^{ 89 }{ (\log _{ e }{ (\sec { \theta } )-\log _{ e }{ (\csc { \theta )) } } } } =?

Note: θ \theta is in degrees.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anthony Muleta
Nov 13, 2015

Using logarithm laws, log e ( sec θ ) log e ( csc θ ) = log e ( sec θ csc θ ) \log _{ e }{ (\sec { \theta )-\log _{ e }{ (\csc { \theta )=\log _{ e }{ (\frac { \sec { \theta } }{ \csc { \theta } } ) } } } } }

= log e ( sin θ cos θ ) =\log _{ e }{ (\frac { \sin { \theta } }{ \cos { \theta } } ) }

= log e ( tan θ ) =\log _{ e }{ (\tan { \theta } ) }

Hence the expression is equivalent to θ = 1 89 log e ( tan θ ) \sum _{ \theta =1 }^{ 89 }{ \log _{ e }{ (\tan { \theta ) } } }

= log e ( tan 1 ) + log e ( tan 2 ) + . . . + log e ( tan 88 ) + log e ( tan 89 ) =\log _{ e }{ (\tan { 1) } +\log _{ e }{ (\tan { 2) } +...+\log _{ e }{ (\tan { 88) } +\log _{ e }{ (\tan { 89) } } } } }

= log e ( tan 1 tan 2... tan 88 tan 89 ) =\log _{ e }{ (\tan { 1 } \tan { 2 } ...\tan { 88 } \tan { 89 } ) }

Now tan θ tan ( 90 θ ) = tan θ sin ( 90 θ ) cos ( 90 θ ) = tan θ cos θ sin θ = tan θ 1 tan θ = 1 \tan { \theta } \tan { (90-\theta ) } \\ =\tan { \theta } \frac { \sin { (90-\theta ) } }{ \cos { (90-\theta ) } } \\ =\tan { \theta } \frac { \cos { \theta } }{ \sin { \theta } } \\ =\tan { \theta } \frac { 1 }{ \tan { \theta } } \\ =1

Hence the expression reduces to log e ( tan 45 ) = log e 1 = 0 \log _{ e }{ (\tan { 45 } ) } \\ =\log _{ e }{ 1 } \\ =\boxed { 0 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...