Odd tower

What is the last digit of

3 5 7 9 ? \Large 3^{5^{7^{9}}}?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pankaj Jangra
Jan 27, 2018

Cyclicity of 3 is four so divide the given power by 4 5^7^9 By binomial expansion we get ((4+1)^7^9)/4 The remainder will be 1^7^9= 1 So last digit of 3^5^7^9 is same as that of 3^1 i.e. 3 Hence answer is 3

Aaryan Maheshwari
Dec 15, 2017

We start from top to bottom: Last digit of 7 9 is 1(cyclicity of 7 is 7,9,1,1...) \text{Last digit of}\space 7^9 \text{is 1(cyclicity of 7 is 7,9,1,1...)} Last digit of 5 1 is 5(cyclicity of 5 is 5,5,5,5...) \text{Last digit of}\space 5^1 \text{is 5(cyclicity of 5 is 5,5,5,5...)} Last digit of 3 5 is 3 (cyclicity of 3 is 3,9,7,1,3,9,7,1,...) \text{Last digit of}\space 3^5 \text{is} \boxed{3}\text{(cyclicity of 3 is 3,9,7,1,3,9,7,1,...)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...