Find the area of triangle A B C given that its centroid is found at the origin, its circumcenter is at ( − 2 , − 1 ) , and vertex A is found at ( 0 , 4 ) .
If the area of this triangle is of the form a c b , where { a , b , c } ∈ Z + and b and c are square free, find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Really nice solution!
Thanks for giving a nice solution. Up voted. Give my solution just to show another approach.
W e s h i f t t h e a x e s t o ( − 2 , − 1 ) . S o t h e n e w c o o r d i n a t e s a r e A ( 2 , 5 ) ; O ( 0 , 0 ) ; G ( 2 , 1 ) . L e t H b e t h e o r t h o c e n t e r . T h e n w e k n o w O H = 3 ∗ O G . S o H ( 6 , 3 ) . L e t M b e t h e t h e f o o t o f a l t i t u d e f r o m A . I t p a s s e s t h r o u g h H . S o Y A M = 3 − 6 5 − 3 ∗ ( X − 2 ) + 5 = − 2 X + 6 . . . . . . . . . . ( 1 ) ⟹ s l o p e o f B C i s 2 . . . . . . . . . ( 2 ) C i r c u m ◯ i s x 2 + y 2 = 2 2 + 5 2 = 2 9 . O ( 0 , 0 ) a s c e n t e r . . . . . . . ( 3 ) L e t A M e x t e n d e d m e e t ◯ a t N . B y ( 1 ) a n d ( 3 ) X N 2 + ( − 2 1 X N + 6 ) 2 = 2 9 . S o l v i n g q u a d r a t i c i n X N , w e g e t , 5 1 4 a n d 2 . W e k n o w 2 = X A , s o X N = 5 1 4 . F r o m ( 1 ) g e t Y N = 5 2 3 . ⟹ N ( 5 1 4 , 5 2 3 ) . W e a l s o k n o w t h a t N i s t h e r e f l e c t i o n o f H w r t B C . ⟹ M i s t h e m i d p o i n t o f H N . S o M ( 5 2 2 , 5 1 9 ) . B y ( 2 ) , Y B C = 2 ( X − 5 2 2 ) + 5 1 9 = 2 X + 5 . S o c h o r d B C i s a t ⊥ d i s t a n c e o f 2 2 + 1 2 0 + 0 + 5 = 5 f r o m O . S o 2 1 B C = 2 9 − ( 5 ) 2 = 2 4 = 2 6 . . . . . . . . . . ( 4 ) A l t i t u d e A M = ( X A − X M ) 2 + ( Y A − Y M ) 2 = 6 ∗ 5 1 . B y ( 4 ) A r e a Δ A B C = 2 1 B C ∗ A M = 2 ∗ 6 ∗ ( 6 ∗ 5 1 ) . A r e a = 1 2 ∗ 5 6 = a ∗ c b . a + b + c = 1 2 + 6 + 5 = 2 3 .
S u m m a r y : − W e s h i f t e d t h e o r i g i n t o C i r c u m ⨀ , O ( − 2 , − 1 ) . F o u n d o r t h o c e n t e r H o n E u l e r L i n e f r o m g i v e n O a n d G . F o u n d r e f l e c t i o n o f H w r t B C a s N w h e r e E x t e n d e d A H m e e t C i r c u m ◯ . O b t a i n e q u a t i o n o f c c h o r d a n d s i d e 0 f Δ A B C , B C p a s s i n g t h r o u g h M m i d p o i n t o f H N . F o u n d ⊥ d i s t a n c e o f B C f r o m C i r c u m ⨀ a n d h e n c e h a l f c h o r d l e n g t h . F o u n d a l t i t u d e l e n g t h A M . T h u s a r e a o f Δ A B C .
O R
S e c o n d a p p r o a c h : − W e s h i f t e d t h e o r i g i n t o C i r c u m ⨀ , O ( − 2 , − 1 ) . F i n d o r t h o c e n t e r H o n E u l e r L i n e f r o m g i v e n O a n d G . F i n d D o f m e d i a n A D , b y e x t e n d i n g A G t o D , A O = 2 O D . G e t s l o p e o f B C a s ⊥ t o A H . F i n d ⊥ d i s t a n c e o f c h o r d B C f r o m O . H e n c e 2 1 B C . E x t e n d A H t o m e e t B C a t M . F i n d l e n g t h A D . A r e a = 2 1 B C ∗ A D .
Problem Loading...
Note Loading...
Set Loading...
Let (x,y) & (z,t) be the other two vertices. Then we can set up the following equations x=-z, y+t=-4,29=(x+2)²+(y+1)²,29=(z+2)²+(t+1)² and ,2A=x(4-t)+z(y-4) where A is the area of the triangle. A=12√( 5 6 ) and thus a+b+c=12+6+5=23