Oddly defined triangle

Geometry Level 5

Find the area of triangle A B C ABC given that its centroid is found at the origin, its circumcenter is at ( 2 , 1 ) \left( -2, -1 \right) , and vertex A A is found at ( 0 , 4 ) \left( 0,4 \right) .

If the area of this triangle is of the form a b c a\sqrt{\dfrac{b}{c}} , where { a , b , c } Z + \left\{ a,b,c \right\} \in \mathbb{Z^+} and b b and c c are square free, find a + b + c a+b+c .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ajit Athle
Mar 20, 2018

Let (x,y) & (z,t) be the other two vertices. Then we can set up the following equations x=-z, y+t=-4,29=(x+2)²+(y+1)²,29=(z+2)²+(t+1)² and ,2A=x(4-t)+z(y-4) where A is the area of the triangle. A=12√( 6 5 \frac{6}{5} ) and thus a+b+c=12+6+5=23

Really nice solution!

Akeel Howell - 3 years, 2 months ago

Thanks for giving a nice solution. Up voted. Give my solution just to show another approach.

Niranjan Khanderia - 3 years, 1 month ago

W e s h i f t t h e a x e s t o ( 2 , 1 ) . S o t h e n e w c o o r d i n a t e s a r e A ( 2 , 5 ) ; O ( 0 , 0 ) ; G ( 2 , 1 ) . L e t H b e t h e o r t h o c e n t e r . T h e n w e k n o w O H = 3 O G . S o H ( 6 , 3 ) . L e t M b e t h e t h e f o o t o f a l t i t u d e f r o m A . I t p a s s e s t h r o u g h H . S o Y A M = 5 3 3 6 ( X 2 ) + 5 = X 2 + 6.......... ( 1 ) s l o p e o f B C i s 2......... ( 2 ) C i r c u m i s x 2 + y 2 = 2 2 + 5 2 = 29. O ( 0 , 0 ) a s c e n t e r . . . . . . . ( 3 ) L e t A M e x t e n d e d m e e t a t N . B y ( 1 ) a n d ( 3 ) X N 2 + ( 1 2 X N + 6 ) 2 = 29. S o l v i n g q u a d r a t i c i n X N , w e g e t , 14 5 a n d 2. W e k n o w 2 = X A , s o X N = 14 5 . F r o m ( 1 ) g e t Y N = 23 5 . N ( 14 5 , 23 5 ) . W e a l s o k n o w t h a t N i s t h e r e f l e c t i o n o f H w r t B C . M i s t h e m i d p o i n t o f H N . S o M ( 22 5 , 19 5 ) . B y ( 2 ) , Y B C = 2 ( X 22 5 ) + 19 5 = 2 X + 5. S o c h o r d B C i s a t d i s t a n c e o f 0 + 0 + 5 2 2 + 1 2 = 5 f r o m O . S o 1 2 B C = 29 ( 5 ) 2 = 24 = 2 6 . . . . . . . . . . ( 4 ) A l t i t u d e A M = ( X A X M ) 2 + ( Y A Y M ) 2 = 6 1 5 . B y ( 4 ) A r e a Δ A B C = 1 2 B C A M = 2 6 ( 6 1 5 ) . A r e a = 12 6 5 = a b c . a + b + c = 12 + 6 + 5 = 23. \color{#BA33D6}{We~shift~ the~axes~to~(-2, -1).\\ So~ the~ new~coordinates ~are~A(2,5);~~O(0,0);~~G(2,1).\\ ~~~\\ ~~~\\ Let~H~be~the~orthocenter. Then~we~know~OH=3*OG.~~~~~ So~\color{#3D99F6}{H(6,3)}.\\ ~~~\\ ~~~\\ Let~M~be ~the~the ~foot~of~altitude~from~A.~It~passes~through~H.\\ So~Y_{AM}=\dfrac{5-3}{3-6}*(X-2)+5=-\frac X 2+6..........(1)\\ \implies~slope~of~BC~is~2.........(2)\\ ~~~\\ Circum\bigcirc~is~x^2+y^2=2^2+5^2=29. ~O(0,0)~as~center.......(3)\\ ~~~\\ ~~~\\ Let~AM~extended~meet~\bigcirc~at~N. \\ By ~(1)~and~(3)~~X_N^2+(-\frac 1 2 X_N+6)^2=29.\\ Solving~quadratic~in~X_N,~~we~get,~\dfrac {14} 5~~and~~2.\\ We~ know~2=X_A, ~so~X_N=\dfrac {14} 5.\\ From~(1)~~get~Y_N=\dfrac {23} 5.\implies~\color{#3D99F6}{N \Big(\dfrac {14} 5,\dfrac {23} 5 \Big)} .\\ ~~~\\ ~~~\\ We~also~know~that ~N~is ~the~ reflection~of~ H~wrt~BC.\\ \implies~M~is~the~midpoint~of~HN.~~So~\color{#3D99F6}{M\Big(\dfrac {22} 5,~\dfrac {19} 5\Big) }.\\ ~~~\\ ~~~\\ By~(2),~~Y_{BC}=2\Big(X- \dfrac {22} 5\Big)+\dfrac {19} 5=2X+5 .\\ So~chord~BC~is~at~\bot~distance~of~\dfrac{ 0+0+ 5}{\sqrt{2^2+1^2}}=\sqrt5~from ~O.\\ So~\frac 1 2 BC=\sqrt{29-(\sqrt5)^2}=\sqrt{24}=\color{#3D99F6}{2\sqrt6} ..........(4)\\ ~~~\\ ~~~\\ Altitude~AM=\sqrt{(X_A-X_M)^2+(Y_A-Y_M)^2}=\color{#3D99F6}{6*\dfrac 1 {\sqrt5} }.\\ ~~~\\ ~~~\\ By~(4)~~Area~\Delta~ABC=\frac 1 2 BC*AM=2*\sqrt6*\Big (6 *\dfrac 1 {\sqrt5} \Big ).\\ ~~~\\ ~~~\\ Area~=~12*\sqrt{\dfrac 6 5}=a*\sqrt{\frac b c}.\\ a+b+c=12+6+5=\color{#D61F06}{23}. } \\ ~~~\\ ~~~\\

S u m m a r y : W e s h i f t e d t h e o r i g i n t o C i r c u m , O ( 2 , 1 ) . F o u n d o r t h o c e n t e r H o n E u l e r L i n e f r o m g i v e n O a n d G . F o u n d r e f l e c t i o n o f H w r t B C a s N w h e r e E x t e n d e d A H m e e t C i r c u m . O b t a i n e q u a t i o n o f c c h o r d a n d s i d e 0 f Δ A B C , B C p a s s i n g t h r o u g h M m i d p o i n t o f H N . F o u n d d i s t a n c e o f B C f r o m C i r c u m a n d h e n c e h a l f c h o r d l e n g t h . F o u n d a l t i t u d e l e n g t h A M . T h u s a r e a o f Δ A B C . \color{#20A900}{Summary:- ~~~~We~ shifted ~the~origin~to~Circum\bigodot,~O(-2,-1).\\ Found~orthocenter~H~on~Euler~ Line ~from~given~O~and~G.\\ Found~reflection~of~H~wrt~BC~as~N~where~Extended~AH~meet~Circum\bigcirc.\\ Obtain~equation~of~c~chord~and~side~0f~\Delta~ABC,~~BC~passing~through~M~midpoint~of~HN.\\ Found~\bot~distance~of~BC~from~Circum\bigodot~and~hence~half~chord~length.\\ Found ~altitude~length~AM. Thus~area~of~\Delta~ABC.}

O R OR

S e c o n d a p p r o a c h : W e s h i f t e d t h e o r i g i n t o C i r c u m , O ( 2 , 1 ) . F i n d o r t h o c e n t e r H o n E u l e r L i n e f r o m g i v e n O a n d G . F i n d D o f m e d i a n A D , b y e x t e n d i n g A G t o D , A O = 2 O D . G e t s l o p e o f B C a s t o A H . F i n d d i s t a n c e o f c h o r d B C f r o m O . H e n c e 1 2 B C . E x t e n d A H t o m e e t B C a t M . F i n d l e n g t h A D . A r e a = 1 2 B C A D . \color{#EC7300}{Second~approach:-\\ We~ shifted ~the~origin~to~Circum\bigodot,~O(-2,-1).\\ Find~orthocenter~H~on~Euler~ Line ~from~given~O~and~G.\\ Find~D~of~median~AD, by~extending~AG~to~D,~~AO=2OD.\\ Get~slope~of~BC~as~\bot~to~AH.\\ Find~\bot~distance~of~chord~BC~from~O.~Hence~\frac 1 2 BC.\\ Extend~AH~to~meet~BC~at~M. ~Find~length~AD.\\ Area= \frac 1 2 BC*AD.}\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...