Of altitudes of triangles

Geometry Level 4

A ( 33 , 26 ) A(33,26) , B ( 2 , 5 ) B(-2,5) and C ( α , β ) C (\alpha, \beta) are the vertices of a A B C \triangle ABC situated in the x y xy plane. If the orthocenter of this triangle is H ( 1 , 2 ) H(1,2) , then find the coordinates of vertex C C .

Submit your answer as the value of α + β \alpha + \beta .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L e t A D b e t h e a l t i t u d e f r o m A , B E f r o m B , a n d C F f r o m C . Y A D = 26 2 33 1 ( X 1 ) + 2 = 3 4 X + 5 4 . Y B C = 4 3 ( X + 2 ) + 5 = 4 3 X + 7 3 . A l s o Y B E = 2 5 1 + 2 ( X 1 ) + 2 = 1 ( X 1 ) + 2 = X + 3 Y A C = 1 ( X 33 ) + 26 = X 7. 4 3 X C + 7 3 = X C 7. α = X C = 4. β = Y C = X C 7 = 4. S o α + β = 1. Let~AD ~be~the~altitude~from~A,~~BE~~from~B,~~and~CF~from~C.\\ \therefore~Y_{AD}=\dfrac{26-2}{33-1}(X-1)+2=\frac 3 4 X+\frac 5 4.\\ \implies~Y_{BC}=-\frac 4 3 (X+2)+5=-\frac 4 3 X+\frac 7 3.\\ Also~Y_{BE}=\dfrac{2-5}{1+2}(X-1)+2=-1(X-1)+2=-X+3\\ \implies~Y_{AC}=1 (X-33)+26= X - 7.\\ \therefore~-\frac 4 3 X_C+\frac 7 3= X_C - 7 .\\ \therefore~~\alpha=X_C=4.\\ \implies~\beta=Y_C=X_C - 7=-4.\\ So~\alpha+\beta=\huge~~~\color{#D61F06}{1}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...