Offset Sphere Expected Distance

Calculus Level 5

In the x y z xyz coordinate system, there is a solid sphere of radius 1 1 centered at ( 1 , 1 , 1 ) (1,1,1) .

Suppose the distance from a random point within the spherical volume to the origin is D D . What is the expected value of D 2 D^2 ?

Inspiration


The answer is 3.6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

D 2 = x 2 + y 2 + z 2 \large D^{2} = x^{2}+y^{2}+z^{2}

What we want to find out is 1 4 π 3 P D 2 d x d y d z \large \frac{1}{\frac{4\pi}{3}}\iiint_{P} D^{2} dxdydz where P P is the volume within the sphere ( x 1 ) 2 + ( y 1 ) 2 + ( z 1 ) 2 = 1 (x-1)^{2}+(y-1)^{2}+(z-1)^{2} =1 .

Let us use a variable change of x = 1 + u x=1+u , y = 1 + v y=1+v and z = 1 + w z=1+w . The Jacobian would simply be 1 1 .

we need to find the integral Q ( ( 1 + u ) 2 + ( 1 + v ) 2 + ( 1 + w ) 2 ) d u d v d w \large \iiint_{Q} ((1+u)^{2}+(1+v)^{2}+(1+w)^{2}) dudvdw where Q Q is the volume within the sphere u 2 + v 2 + w 2 = 1 u^{2}+v^{2}+w^{2}=1

Now shifting into polar coordinates where u = r sin ( θ ) cos ( ϕ ) u=r\sin(\theta)\cos(\phi) , v = r sin ( θ ) sin ( ϕ ) v=r\sin(\theta)\sin(\phi) and w = r cos ( θ ) w=r\cos(\theta) . The Jacobian of this transformation is J = r 2 sin ( θ ) \lvert J \rvert = r^{2}\sin(\theta) We have:-

0 π 0 2 π 0 1 ( 3 + r 2 + 2 r ( sin ( θ ) cos ( ϕ ) + sin ( θ ) sin ( ϕ ) + cos ( θ ) ) ) r 2 sin ( θ ) d r d ϕ d θ \large \int_{0}^{\pi}\int_{0}^{2\pi}\int_{0}^{1}\left(3+r^{2} + 2r(\sin(\theta)\cos(\phi)+\sin(\theta)\sin(\phi)+\cos(\theta))\right) r^{2}\sin(\theta) drd\phi d\theta

Now 0 2 π sin ( ϕ ) d ϕ = 0 2 π cos ( ϕ ) d ϕ = 0 \large \int_{0}^{2\pi}\sin(\phi)d\phi =\int_{0}^{2\pi}\cos(\phi)d\phi = 0

and 0 π sin ( θ ) cos ( θ ) d θ = 0 \int_{0}^{\pi}\sin(\theta)\cos(\theta)d\theta = 0 .

Hence we have to find:-

0 π 0 2 π 0 1 ( 3 + r 2 ) r 2 sin ( θ ) d r d ϕ d θ \large \int_{0}^{\pi}\int_{0}^{2\pi}\int_{0}^{1} (3+r^{2}) r^{2}\sin(\theta) drd\phi d\theta (as the remaining integrals become 0).

We know 0 π sin ( θ ) d θ = 2 \large \int_{0}^{\pi}\sin(\theta)d\theta = 2 and 0 2 π d ϕ = 2 π \large \int_{0}^{2\pi}d\phi = 2\pi

So our integral reduces to 4 π ( 0 1 ( 3 r 2 + r 5 ) d r ) \large 4\pi(\int_{0}^{1}(3r^{2}+r^{5})dr)

So this integral is easy enough to evaluate and we will get the answer as 2 π ( 2 + 2 5 ) = 24 π 5 \large 2\pi(2+\frac{2}{5})=\frac{24\pi}{5} .

So the expected value of D 2 D^{2} is 24 π 5 4 π 3 = 18 5 = 3.6 \displaystyle \frac{\frac{24\pi}{5}}{\frac{4\pi}{3}} = \frac{18}{5} = 3.6

Mark Hennings
Nov 18, 2017

Shift the coordinate system so that the centre of the sphere is at the origin, and D D is the distance from the point ( 1 , 1 , 1 ) (-1,-1,-1) . Let a = ( 1 1 1 ) T \mathbf{a} = (1\;1\;1)^T . Then, integrating over the sphere, r a 2 d V = ( r 2 2 a r + a 2 ) d V = r 2 d V 2 a r d V + a 2 d V = 0 1 r 2 × 4 π r 2 d r 2 a 0 + 4 3 π a 2 = 4 5 π + 4 3 π × 3 = 24 5 π \begin{aligned} \iiint |\mathbf{r} - \mathbf{a}|^2\,dV & = \; \iiint \big(|\mathbf{r}|^2 - 2\mathbf{a}\cdot\mathbf{r} + |\mathbf{a}|^2\big)\, dV \; = \; \iiint |\mathbf{r}|^2\,dV - 2\mathbf{a}\cdot \iiint\mathbf{r}\,dV + |\mathbf{a}|^2 \iiint \,dV \\ & = \; \int_0^1 r^2 \times 4\pi r^2\,dr - 2\mathbf{a}\cdot\mathbf{0} + \tfrac43\pi|\mathbf{a}|^2 \; = \; \tfrac45\pi + \tfrac43\pi \times 3 = \tfrac{24}{5}\pi \end{aligned} since the origin is the centre of mass of the sphere. Dividing by 4 3 π \tfrac43\pi tells us that E [ D 2 ] = 18 5 = 3.6 \mathbb{E}[D^2] \; = \; \tfrac{18}{5} \; = \; \boxed{3.6}

@Mark Hennings Could you reply with the intuition you used. I feel like I'm missing on something profound in your solution.

A Former Brilliant Member - 3 years, 6 months ago

Log in to reply

I just shifted coordinates to make it clear why the "cross term" r d V \iiint \mathbf{r}\,dV was zero.

Mark Hennings - 3 years, 6 months ago
Jon Haussmann
Nov 22, 2017

More generally, consider a sphere of radius R R centered at O = ( 0 , 0 , 0 ) O = (0,0,0) , and let P = ( a , b , c ) P = (a,b,c) .

Parametrically, we can represent a point inside the sphere by ( r cos θ sin ϕ , r sin θ sin ϕ , r cos ϕ ) (r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi) , where 0 r R 0 \le r \le R , 0 θ 2 π 0 \le \theta \le 2 \pi , and 0 ϕ π 0 \le \phi \le \pi . If D D is the distance from a point inside the sphere to P P , then the expected value of D 2 D^2 is 1 4 3 π R 3 0 R 0 2 π 0 π [ ( r cos θ sin ϕ a ) 2 + ( r sin θ sin ϕ b ) 2 + ( r cos ϕ c ) 2 ] r 2 sin ϕ d r d θ d ϕ = 1 4 3 π R 3 0 R 0 2 π 0 π ( r 2 cos 2 θ sin 2 ϕ 2 a r cos θ sin ϕ + a 2 + r 2 sin 2 θ sin 2 ϕ 2 b r sin θ sin ϕ + b 2 + r 2 cos 2 ϕ 2 c r cos ϕ + c 2 ) r 2 sin ϕ d r d θ d ϕ = 1 4 3 π R 3 0 R 0 2 π 0 π ( r 2 2 a r cos θ sin ϕ 2 b r sin θ sin ϕ 2 c r cos ϕ + a 2 + b 2 + c 2 ) r 2 sin ϕ d r d θ d ϕ = 1 4 3 π R 3 0 R 0 2 π 0 π r 4 sin ϕ r 3 ( 2 a cos θ sin 2 ϕ + 2 b sin θ sin 2 ϕ + 2 c cos ϕ sin ϕ ) + r 2 ( a 2 + b 2 + c 2 ) sin ϕ d r d θ d ϕ = 1 4 3 π R 3 0 R 0 π 2 π r 4 sin ϕ 4 π c r 3 cos ϕ sin ϕ + 2 π r 2 ( a 2 + b 2 + c 2 ) sin ϕ d r d ϕ = 1 4 3 π R 3 0 R 4 π r 4 + 4 π r 2 ( a 2 + b 2 + c 2 ) d r = 1 4 3 π R 3 [ 4 π R 5 5 + 4 π R 3 ( a 2 + b 2 + c 2 ) 3 ] = 3 5 R 2 + a 2 + b 2 + c 2 = 3 5 R 2 + O P 2 . \begin{aligned} &\frac{1}{\frac{4}{3} \pi R^3} \int_0^R \int_0^{2 \pi} \int_0^\pi [(r \cos \theta \sin \phi - a)^2 + (r \sin \theta \sin \phi - b)^2 + (r \cos \phi - c)^2] r^2 \sin \phi \ dr \ d \theta \ d \phi \\ &= \frac{1}{\frac{4}{3} \pi R^3} \int_0^R \int_0^{2 \pi} \int_0^\pi (r^2 \cos^2 \theta \sin^2 \phi - 2ar \cos \theta \sin \phi + a^2 + r^2 \sin^2 \theta \sin^2 \phi - 2br \sin \theta \sin \phi + b^2 + r^2 \cos^2 \phi - 2cr \cos \phi + c^2) r^2 \sin \phi \ dr \ d \theta \ d \phi \\ &= \frac{1}{\frac{4}{3} \pi R^3} \int_0^R \int_0^{2 \pi} \int_0^\pi (r^2 - 2ar \cos \theta \sin \phi - 2br \sin \theta \sin \phi - 2cr \cos \phi + a^2 + b^2 + c^2) r^2 \sin \phi \ dr \ d \theta \ d \phi \\ &= \frac{1}{\frac{4}{3} \pi R^3} \int_0^R \int_0^{2 \pi} \int_0^\pi r^4 \sin \phi - r^3 (2a \cos \theta \sin^2 \phi + 2b \sin \theta \sin^2 \phi + 2c \cos \phi \sin \phi) + r^2 (a^2 + b^2 + c^2) \sin \phi \ dr \ d \theta \ d \phi \\ &= \frac{1}{\frac{4}{3} \pi R^3} \int_0^R \int_0^\pi 2 \pi r^4 \sin \phi - 4 \pi cr^3 \cos \phi \sin \phi + 2 \pi r^2 (a^2 + b^2 + c^2) \sin \phi \ dr \ d \phi \\ &= \frac{1}{\frac{4}{3} \pi R^3} \int_0^R 4 \pi r^4 + 4 \pi r^2 (a^2 + b^2 + c^2) \ dr \\ &= \frac{1}{\frac{4}{3} \pi R^3} \left[ \frac{4 \pi R^5}{5} + \frac{4 \pi R^3 (a^2 + b^2 + c^2)}{3} \right] \\ &= \frac{3}{5} R^2 + a^2 + b^2 + c^2 = \frac{3}{5} R^2 + OP^2. \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...