Oh Gravity!!

By what percent will the gravitational force between the two bodies be increased if their masses are increased by 50% ?

125% 100% 50% 75%

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

W e k n o w t h a t F G r a v i . = G m 1 m 2 r 2 B y i n c r e a s i n g m 1 a n d m 2 b y a f a c t o r o f 1 / 2 T h e n e w m a s s e s a r e M 1 a n d M 2 M 1 = m 1 + 1 / 2 m 1 = 3 2 m 1 M 2 = 3 2 m 2 F G r a v i . = 9 4 G m 1 m 2 r 2 S o , T o t a l c h a n g e i n f o r c e = F G r a v i . F G r a v i . F G r a v i . × 100 = 9 4 G m 1 m 2 r 2 G m 1 m 2 r 2 G m 1 m 2 r 2 × 100 = 5 4 × 100 = 125 p e r c e n t We\quad know\quad that\quad { F }_{ Gravi. }=\frac { G{ m }_{ 1 }{ m }_{ 2 } }{ { r }^{ 2 } } \\ By\quad increasing\quad { m }_{ 1 }\quad and\quad { m }_{ 2 }\quad by\quad a\quad factor\quad of\quad 1/2\\ The\quad new\quad masses\quad are\quad { M }_{ 1 }\quad and\quad { M }_{ 2 }\\ { M }_{ 1 }\quad =\quad { m }_{ 1 }\quad +\quad 1/2\quad { m }_{ 1 }\quad =\quad \frac { 3 }{ 2 } { m }_{ 1 }\\ { M }_{ 2 }\quad =\quad \frac { 3 }{ 2 } { m }_{ 2 }\\ { { F }^{ ' } }_{ Gravi. }=\frac { 9 }{ 4 } \frac { G{ m }_{ 1 }{ m }_{ 2 } }{ { r }^{ 2 } } \\ So,\quad Total\quad change\quad in\quad force\quad =\quad \frac { { { F }^{ ' } }_{ Gravi. }-{ { F } }_{ Gravi. } }{ { { F } }_{ Gravi. } } \times 100\\ =\quad \frac { \frac { 9 }{ 4 } \frac { G{ m }_{ 1 }{ m }_{ 2 } }{ { r }^{ 2 } } -\frac { G{ m }_{ 1 }{ m }_{ 2 } }{ { r }^{ 2 } } }{ \frac { G{ m }_{ 1 }{ m }_{ 2 } }{ { r }^{ 2 } } } \times 100\\ =\quad \frac { 5 }{ 4 } \times 100\quad =\quad 125\quad percent

CHEERS!!:)

Thank you 😁😁😁😁😁😁

Pavan Yadav - 4 years, 2 months ago

Log in to reply

Thnkss bro😃😁😁😁😁😁

surabhi singh rajput - 3 years, 5 months ago
Dawar Husain
Dec 22, 2014

With original masses, F G = G m M r 2 \text{With original masses, } F_G\ = \dfrac{GmM}{r^2}

After increasing the mass, F G = G m M × 15 0 2 10 0 2 r 2 \text{After increasing the mass, } F_G\ = \dfrac{GmM\times{150^2}}{100^2r^2}

Percentage increase = G m M × 15 0 2 10 0 2 r 2 G m M 100 r 2 100 = 225 100 = 125 % \text{Percentage increase}\ =\ \dfrac{\dfrac{GmM\times{150^2}}{100^2r^2}}{\dfrac{GmM}{100r^2}}-100 = 225-100 = 125\%

Thanks a. Lot

Pavan Yadav - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...