Oh, How Long It Takes?

Algebra Level 5

x 2 2 2 1 2 + y 2 2 2 3 2 + z 2 2 2 5 2 + w 2 2 2 7 2 = 1 x 2 4 2 1 2 + y 2 4 2 3 2 + z 2 4 2 5 2 + w 2 4 2 7 2 = 1 x 2 6 2 1 2 + y 2 6 2 3 2 + z 2 6 2 5 2 + w 2 6 2 7 2 = 1 x 2 8 2 1 2 + y 2 8 2 3 2 + z 2 8 2 5 2 + w 2 8 2 7 2 = 1 \begin{aligned} \dfrac{x^2}{2^2-1^2}+\dfrac{y^2}{2^2-3^2}+\dfrac{z^2}{2^2-5^2}+\dfrac{w^2}{2^2-7^2} \ = \ 1 \\ \dfrac{x^2}{4^2-1^2}+\dfrac{y^2}{4^2-3^2}+\dfrac{z^2}{4^2-5^2}+\dfrac{w^2}{4^2-7^2} \ = \ 1 \\ \dfrac{x^2}{6^2-1^2}+\dfrac{y^2}{6^2-3^2}+\dfrac{z^2}{6^2-5^2}+\dfrac{w^2}{6^2-7^2} \ = \ 1 \\ \dfrac{x^2}{8^2-1^2}+\dfrac{y^2}{8^2-3^2}+\dfrac{z^2}{8^2-5^2}+\dfrac{w^2}{8^2-7^2} \ = \ 1 \\ \end{aligned}

Determine w 2 + x 2 + y 2 + z 2 w^2+x^2+y^2+z^2 if they satisfy the system of equations above.


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Department 8
Feb 12, 2016

I present two Solution over here:

Solution 1 :

Rewrite the system of equations as x 2 t 1 + y 2 t 3 2 + z 2 t 5 2 + w 2 t 7 2 = 1 \dfrac{x^{2}}{t-1}+\dfrac{y^{2}}{t-3^{2}}+\dfrac{z^{2}}{t-5^{2}}+\dfrac{w^{2}}{t-7^{2}}=1 This equation is satisfied when t = 4 , 16 , 36 , 64 t = 4,16,36,64 , as then the equation is equivalent to the given equations. After clearing fractions, for each of the values t = 4 , 16 , 36 , 64 t=4,16,36,64 , we have the equation x 2 ( t 9 ) ( t 25 ) ( t 49 ) + y 2 ( t 1 ) ( t 25 ) ( t 49 ) $ $ + z 2 ( t 1 ) ( t 9 ) ( t 49 ) + w 2 ( t 1 ) ( t 9 ) ( t 25 ) = ( t 1 ) ( t 9 ) ( t 25 ) ( t 49 ) x^2(t-9)(t-25)(t-49)+y^2(t-1)(t-25)(t-49)\$ \$+z^2(t-1)(t-9)(t-49)+w^2(t-1)(t-9)(t-25) = (t-1)(t-9)(t-25)(t-49) . When t = 4 , 16 , 36 , 64 t=4,16,36,64 , a ( t 4 ) ( t 16 ) ( t 36 ) ( t 64 ) (t-4)(t-16)(t-36)(t-64) term can be subtracted from the right-hand side because it equals 0. Thus we have the following equation which holds for t = 4 , 16 , 36 , 64 t=4,16,36,64 :

x 2 ( t 9 ) ( t 25 ) ( t 49 ) + y 2 ( t 1 ) ( t 25 ) ( t 49 ) $ $ + z 2 ( t 1 ) ( t 9 ) ( t 49 ) + w 2 ( t 1 ) ( t 9 ) ( t 25 ) = ( t 1 ) ( t 9 ) ( t 25 ) ( t 49 ) ( t 4 ) ( t 16 ) ( t 36 ) ( t 64 ) x^2(t-9)(t-25)(t-49)+y^2(t-1)(t-25)(t-49)\$ \$+z^2(t-1)(t-9)(t-49)+w^2(t-1)(t-9)(t-25) \\ =(t-1)(t-9)(t-25)(t-49)-(t-4)(t-16)(t-36)(t-64)

Each side of this equation is a polynomial in t t of degree at most 3, and they are equal for 4 values of t t (when t = 4 , 16 , 36 , 64 t=4,16,36,64 ). Therefore, the polynomials must be equal for all t t .

Now we can plug in t = 1 t=1 into the polynomial equation. Most terms drop, and we end up with

x 2 ( 8 ) ( 24 ) ( 48 ) = ( 3 ) ( 15 ) ( 35 ) ( 63 ) x^2(-8)(-24)(-48)=-(-3)(-15)(-35)(-63)

so that

x 2 = 3 15 35 63 8 24 48 = 3 2 5 2 7 2 2 10 x^2=\frac{3\cdot 15\cdot 35\cdot 63}{8\cdot 24\cdot 48}=\frac{3^2\cdot 5^2\cdot 7^2}{2^{10}}

Similarly, we can plug in t = 9 , 25 , 49 t=9,25,49 and get

y 2 = 5 7 27 55 8 16 40 = 3 3 5 7 11 2 10 z 2 = 21 9 11 39 24 16 24 = 3 2 7 11 13 2 10 w 2 = 45 33 13 15 48 40 24 = 3 2 5 11 13 2 10 \begin{aligned} y^2&=\frac{5\cdot 7\cdot 27\cdot 55}{8\cdot 16\cdot 40}=\frac{3^3\cdot 5\cdot 7\cdot 11}{2^{10}}\\ z^2&=\frac{21\cdot 9\cdot 11\cdot 39}{24\cdot 16\cdot 24}=\frac{3^2\cdot 7\cdot 11\cdot 13}{2^{10}}\\ w^2&=\frac{45\cdot 33\cdot 13\cdot 15}{48\cdot 40\cdot 24}=\frac{3^2\cdot 5\cdot 11\cdot 13}{2^{10}}\end{aligned}

Now adding them up,

z 2 + w 2 = 3 2 11 13 ( 7 + 5 ) 2 10 = 3 3 11 13 2 8 x 2 + y 2 = 3 2 5 7 ( 5 7 + 3 11 ) 2 10 = 3 2 5 7 17 2 8 \begin{aligned}z^2+w^2&=\frac{3^2\cdot 11\cdot 13(7+5)}{2^{10}}=\frac{3^3\cdot 11\cdot 13}{2^8}\\ x^2+y^2&=\frac{3^2\cdot 5\cdot 7(5\cdot 7+3\cdot 11)}{2^{10}}=\frac{3^2\cdot 5\cdot 7\cdot 17}{2^8}\end{aligned}

with a sum of

3 2 ( 3 11 13 + 5 7 17 ) 2 8 = 3 2 4 = 36 . \frac{3^2(3\cdot 11\cdot 13+5\cdot 7\cdot 17)}{2^8}=3^2\cdot 4=\boxed{36}.

Lengthy proof that any two cubic polynomials in t t which are equal at 4 values of t t are themselves equivalent: Let the two polynomials be A ( t ) A(t) and B ( t ) B(t) and let them be equal at t = a , b , c , d t=a,b,c,d . Thus we have A ( a ) B ( a ) = 0 , A ( b ) B ( b ) = 0 , A ( c ) B ( c ) = 0 , A ( d ) B ( d ) = 0 A(a) - B(a) = 0, A(b) - B(b) = 0, A(c) - B(c) = 0, A(d) - B(d) = 0 . Also the polynomial A ( t ) B ( t ) A(t) - B(t) is cubic, but it equals 0 at 4 values of t t . Thus it must be equivalent to the polynomial 0, since if it were nonzero it would necessarily be able to be factored into ( t a ) ( t b ) ( t c ) ( t d ) (t-a)(t-b)(t-c)(t-d) (some nonzero polynomial) which would have a degree greater than or equal to 4, contradicting the statement that A ( t ) B ( t ) A(t) - B(t) is cubic. Because A ( t ) B ( t ) = 0 , A ( t ) A(t) - B(t) = 0, A(t) and B ( t ) B(t) are equivalent and must be equal for all t t .

Post script for the puzzled: This solution which is seemingly unnecessarily redundant in that it computes x 2 , y 2 , z 2 x^2,y^2,z^2 and w 2 w^2 separately before adding them to obtain the final answer is appealing because it gives the individual values of x 2 , y 2 , z 2 x^2,y^2,z^2 and w 2 w^2 which can be plugged into the given equations to check.

Solution 2

As in Solution 1, we have

( 1 ) ( t 9 ) ( t 25 ) ( t 49 ) x 2 ( t 9 ) ( t 25 ) ( t 49 ) y 2 ( t 1 ) ( t 25 ) ( t 49 ) z 2 ( t 1 ) ( t 9 ) ( t 49 ) w 2 ( t 1 ) ( t 9 ) ( t 25 ) = ( t 4 ) ( t 16 ) ( t 36 ) ( t 64 ) (-1)(t-9)(t-25)(t-49)-x^2(t-9)(t-25)(t-49)-y^2(t-1)(t-25)(t-49)-z^2(t-1)(t-9)(t-49)-w^2(t-1)(t-9)(t-25)\\=(t-4)(t-16)(t-36)(t-64)

Now the coefficient of $t^3$ on both sides must be equal. Therefore we have 1 + 9 + 25 + 49 + x 2 + y 2 + z 2 + w 2 = 4 + 16 + 36 + 64 1+9+25+49+x^2+y^2+z^2+w^2=4+16+36+64 implies x 2 + y 2 + z 2 + w 2 = 36 x^2+y^2+z^2+w^2=\boxed{36} .

Is this solution copied from anywhere else?

Rohit Udaiwal - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...