Oh k !

Calculus Level 3

0 π / 2 ( cos x ) 2 + 1 d x 0 π / 2 ( cos x ) 2 1 d x = k k \large \frac{\displaystyle \int_0^{\pi/2} (\cos x)^{\sqrt{2} + 1} dx}{\displaystyle \int_0^{\pi/2} (\cos x)^{ \sqrt{2} - 1} dx}= k - \sqrt{k}

Find k k .

3 2 4 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 23, 2017

Q = 0 π 2 cos 2 + 1 x d x 0 π 2 cos 2 1 x d x = 2 0 π 2 sin 0 x cos 2 + 1 x d x 2 0 π 2 sin 0 x cos 2 1 x d x = B ( 1 2 , 1 + 1 2 ) B ( 1 2 , 1 2 ) where B ( m , n ) is the beta function. = Γ ( 1 2 ) Γ ( 1 + 1 2 ) Γ ( 3 2 + 1 2 ) × Γ ( 1 2 + 1 2 ) Γ ( 1 2 ) Γ ( 1 2 ) where Γ ( z ) is the gamma function. = 1 2 Γ ( 1 2 ) ( 1 2 + 1 2 ) Γ ( 1 2 + 1 2 ) × Γ ( 1 2 + 1 2 ) Γ ( 1 2 ) Note that Γ ( 1 + z ) = z Γ ( z ) = 1 2 1 2 + 1 2 = 2 1 + 2 = 2 ( 2 1 ) ( 2 + 1 ) ( 2 1 ) = 2 2 \begin{aligned} Q & = \frac {\displaystyle \int_0^\frac \pi 2 \cos^{\sqrt 2+1}x \ dx}{\displaystyle \int_0^\frac \pi 2 \cos^{\sqrt 2-1}x \ dx} \\ & = \frac {\displaystyle 2 \int_0^\frac \pi 2 \sin^0 x \cos^{\sqrt 2+1}x \ dx}{\displaystyle 2 \int_0^\frac \pi 2 \sin^0 x \cos^{\sqrt 2-1}x \ dx} \\ & = \frac {B \left(\frac 12, 1+\frac 1{\sqrt 2} \right)}{B \left(\frac 12, \frac 1{\sqrt 2} \right)} & \small \color{#3D99F6} \text{where }B(m,n) \text{ is the beta function.} \\ & = \frac {\Gamma \left(\frac 12 \right)\Gamma \left(1+\frac 1{\sqrt 2} \right)}{\Gamma \left(\frac 32+\frac 1{\sqrt 2} \right)} \times \frac {\Gamma \left(\frac 12+\frac 1{\sqrt 2} \right)}{\Gamma \left(\frac 12 \right)\Gamma \left(\frac 1{\sqrt 2} \right)} & \small \color{#3D99F6} \text{where }\Gamma (z) \text{ is the gamma function.} \\ & = \frac {\frac 1{\sqrt 2}\Gamma \left(\frac 1{\sqrt 2} \right)}{\left(\frac 12+\frac 1{\sqrt 2} \right)\Gamma \left(\frac 12+\frac 1{\sqrt 2} \right)} \times \frac {\Gamma \left(\frac 12+\frac 1{\sqrt 2} \right)}{\Gamma \left(\frac 1{\sqrt 2} \right)} & \small \color{#3D99F6} \text{Note that } \Gamma (1+z) = z \Gamma (z) \\ & = \frac {\frac 1{\sqrt 2}}{\frac 12+\frac 1{\sqrt 2}} = \frac {\sqrt 2}{1+\sqrt 2} \\ & = \frac {\sqrt 2(\sqrt 2-1)}{(\sqrt 2+1)(\sqrt 2-1)} = 2 - \sqrt 2 \end{aligned}

k = 2 \implies k = \boxed{2}


References:

absolutely sir, perfect use of Beta and gamma functions.

Rakshit Joshi - 3 years, 7 months ago

KVPY question?

Tapas Mazumdar - 3 years, 7 months ago

Wow, that is awesome! I figured out a way to reason out which answer choice it was by process of elimination. I have to go, but I'll post that solution a bit later.

James Wilson - 3 years, 7 months ago
James Wilson
Oct 26, 2017

Solution via process of elimination: Both integrands are strictly positive over the domain of integration, so their quotient is nonzero. Hence, k 1 k\neq 1 . The integrand of the numerator is less than or equal to the integrand of the denominator over the domain of integration, since cos 2 ( x ) 1 \cos^2(x)\leq 1 . So, because 3 3 > 1 3-\sqrt{3}>1 and 4 4 > 1 4-\sqrt{4}>1 , k 3 k\neq 3 and k 4 k\neq 4 .

Same i did. :)

Naren Bhandari - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...