Oh no not cubics!

Algebra Level 5

Let a , a, b , b, and c c be the roots of the cubic equation 7 x 3 14 x 2 + 21 x 28 = 0. 7x^3-14x^2+21x-28=0. If a b c , \dfrac{a}{bc} , b a c , \dfrac{b}{ac}, and c a b \dfrac{c}{ab} are the roots of the equation x 3 + r x 2 + s x + t , x^3+rx^2+sx+t, the value of r s \dfrac{r}{s} can be expressed as p q , -\dfrac{p}{q}, where p p and q q are coprime positive integers. Find p + q . p+q.


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Josh Speckman
May 14, 2014

Notice that a b c + b a c + c a b = a 2 + b 2 + c 2 a b c = ( a + b + c ) 2 a b b c a c a b c \dfrac{a}{bc} + \dfrac{b}{ac} + \dfrac{c}{ab} = \dfrac{a^2+b^2+c^2}{abc} = \dfrac{(a+b+c)^2 - ab - bc - ac}{abc} . By Viete's formula, a + b + c = 2 a+b+c = 2 , a b c = 4 abc=4 , and a b + b c + a c = 3 ab+bc+ac=3 . Thus the sum of the roots of the second equation is ( 2 ) 2 3 4 = 1 4 \dfrac{(2)^2 - 3}{4} = \dfrac{1}{4} . By Viete's, this is also r -r . Therefore, r = 1 4 r = - \dfrac{1}{4} . Also, note that (\dfrac{a}{bc} \cdot \dfrac{b}{ac}) + (\dfrac{a}{bc} \cdot \dfrac{c}{ab}) + (\dfrac{b}{ac} \cdot \dfrac{c}{ab}) = \dfrac{1}{a^2} + \dfrac{1}{b^2} + \dfrac{1}{c^2} = \dfrac{a^2b^2+a^2c^2+b^2c^2}{a^2b^2c^2} = \dfrac{(ab+ac+bc)^2 - 2abc(a+b+c)}{a^2b^2c^2} = \dfrac{(3)^2 - 2(4)(2)}{(4)^2} = - \dfrac{7}{16}, which is also \(s . Thus the answer is 1 4 7 16 = 1 4 7 16 = 4 7 \dfrac{- \dfrac{1}{4}}{- \dfrac{7}{16}} = \dfrac{\dfrac{1}{4}}{\dfrac{7}{16}} = \dfrac{4}{7} , and 4 + 7 = 11 4+7=\boxed{11} .

Hey bro, I'm afraid you are wrong with the value of r r . It should be: r = a 2 + b 2 + c 2 a b c = ( a + b + c ) 2 2 ( a b + a c + b c ) a b c = ( 2 ) 2 2 ( 3 ) 4 = 1 2 r=\dfrac{a^2+b^2+c^2}{abc}=\dfrac{(a+b+c)^2-2(ab+ac+bc)}{abc}=\dfrac{(2)^2-2(3)}{4}=-\dfrac{1}{2} . You forgot to multiply by 2 2 . Hence, the correct answer should be 1 2 7 16 = 8 7 \dfrac{-\dfrac{1}{2}}{-\dfrac{7}{16}}=\dfrac{8}{7} , and 8 + 7 = 15 8+7=\boxed{15} . Check it please, nice problem.

Log in to reply

Alan, you missed out the negative sign for r, so r will be 1/2 and not -1/2.

Arjun Bharat - 7 years ago

After reviewing this, I agree that the expression should be 8 7 - \frac{8}{7} .

Those who previously answered -1, 1 or 15 have been marked correct. I've also rephrased the question so that the answer is now 15.

Calvin Lin Staff - 7 years ago

Log in to reply

While I wrote the answer to bigger 1, I was told that it's wrong. Please fix that.

Ninad Akolekar - 6 years, 7 months ago

The answer should be 1. I'll prove my claim.

7 x 3 14 x 2 + 21 x 28 h a s r o o t s a , b a n d c . G i v e n t h a t x 3 + r x 2 + s x + t h a s r o o t s a b c , b a c a n d c a b . W e k n o w t h a t a + b + c = 2 , a b + b c + a c = 3 , a n d a b c = 4. L e t f ( x ) = x 3 + r x 2 + s x + t S u m o f r o o t s o f f ( x ) = r 1 a b c + b a c + c a b = r a 2 + b 2 + c 2 a b c = r ( a + b + c ) 2 2 ( a b + b c + a c ) a b c = r S u b s t i t u t i n g t h e v a l u e s : 2 2 2 ( 3 ) 4 = r r = 1 2 r = 1 2 S u m o f p r o d u c t o f r o o t s o f f ( x ) = s 1 a b c × b a c + b a c × c a b + c a b × a b c = s 1 a 2 + 1 b 2 + 1 c 2 = s ( a b ) 2 + ( b c ) 2 + ( a c ) 2 ( a b c ) 2 = s ( a b + b c + a c ) 2 2 a b c ( a + b + c ) ( a b c ) 2 = s S u b s t i t u t i n g t h e v a l u e s : 3 2 ( 2 × 4 × 2 ) 16 = s s = 7 16 r s = 1 2 7 16 = 1 2 × 16 7 = 8 7 p q = 8 7 p + q = 1 { 7x }^{ 3 }\quad -\quad 14{ x }^{ 2 }\quad +\quad 21x\quad -\quad 28\quad has\quad roots\quad a,\quad b\quad and\quad c.\\ Given\quad that\quad { x }^{ 3 }\quad +\quad { rx }^{ 2 }\quad +\quad sx\quad +\quad t\quad has\quad roots\quad \frac { a }{ bc } ,\quad \frac { b }{ ac } \quad and\quad \frac { c }{ ab } .\\ We\quad know\quad that\quad a\quad +\quad b\quad +\quad c\quad =\quad 2,\quad ab\quad +\quad bc\quad +\quad ac\quad =\quad 3,\quad and\quad abc\quad =\quad 4.\\ \\ Let\quad f(x)\quad =\quad { x }^{ 3 }\quad +\quad { rx }^{ 2 }\quad +\quad sx\quad +\quad t\\ \\ Sum\quad of\quad roots\quad of\quad f(x)\quad =\quad \frac { -r }{ 1 } \\ \frac { a }{ bc } +\quad \frac { b }{ ac } +\quad \frac { c }{ ab } \quad =\quad -r\\ \frac { { a }^{ 2 }\quad +\quad { b }^{ 2 }\quad +\quad { c }^{ 2 } }{ abc } =\quad -r\\ \frac { { (a\quad +\quad b\quad +\quad c) }^{ 2 }\quad -\quad 2(ab\quad +\quad bc\quad +\quad ac) }{ abc } =\quad -r\\ Substituting\quad the\quad values:\quad -\\ \frac { { 2 }^{ 2 }\quad -\quad 2(3) }{ 4 } =\quad -r\\ \therefore \quad -r\quad =\quad \frac { -1 }{ 2 } \quad \Longrightarrow \quad r\quad =\quad \frac { 1 }{ 2 } \\ Sum\quad of\quad product\quad of\quad roots\quad of\quad f(x)\quad =\quad \frac { s }{ 1 } \\ \frac { a }{ bc } \times \frac { b }{ ac } \quad +\quad \frac { b }{ ac } \times \frac { c }{ ab } \quad +\quad \frac { c }{ ab } \times \frac { a }{ bc } \quad =\quad s\\ \frac { 1 }{ { a }^{ 2 } } \quad +\quad \frac { 1 }{ { b }^{ 2 } } \quad +\quad \frac { 1 }{ { c }^{ 2 } } =\quad s\\ \frac { { (ab) }^{ 2 }\quad +\quad { (bc) }^{ 2 }\quad +\quad { (ac) }^{ 2 }\quad }{ { (abc) }^{ 2 } } =\quad s\\ \frac { { (ab\quad +\quad bc\quad +\quad ac) }^{ 2 }\quad -\quad 2abc(a\quad +\quad b\quad +\quad c) }{ { (abc) }^{ 2 } } =\quad s\\ Substituting\quad the\quad values:\quad -\\ \frac { { 3 }^{ 2 }\quad -\quad (2\quad \times \quad 4\quad \times \quad 2) }{ 16 } =\quad s\quad \Longrightarrow \quad s\quad =\quad \frac { -7 }{ 16 } \\ \therefore \quad \frac { r }{ s } \quad =\quad \frac { \frac { 1 }{ 2 } }{ \frac { -7 }{ 16 } } \quad =\quad \frac { 1 }{ 2 } \times \quad \frac { 16 }{ -7 } \quad =\quad \frac { 8 }{ -7 } \\ \therefore \quad \frac { p }{ q } \quad =\quad \frac { 8 }{ -7 } \quad \Longrightarrow \quad p\quad +\quad q\quad =\quad \boxed { 1 } \\ \\ \\

Arjun Bharat - 7 years ago

Log in to reply

The question asks for the fraction in -p/q, so it's actually 8+7=15.

Alex Wang - 6 years, 7 months ago

Yes its wrong

Mehul Chaturvedi - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...