x − z x + y − z z
If x + y = 2 z and x = z , find the value of the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Cleres Cupertino Try to use \dfrac;that makes the fractions look bigger and easier to read
Log in to reply
Could you toggle to Latex just to check??? Or are you talking about the \frac command??? Because i made in \dfrac. I believe the real reason are the parentheses .
x − z x + y − z z = ( x − y ) ( x − z ) x ( y − z ) + z ( x − z ) = x y − z ( x + y ) + z 2 x y − x z + x z − z 2
We just need to simplify and use x + y = 2 z , then we will get x y − z ( 2 z ) + z 2 x y − z 2 = x y − z 2 x y − z 2 = 1
Same way here ^_^
we have x + y = 2 z .Let's try to obtain some equations from x + y = 2 z . x − z = z − y . . . . . . 1 x = 2 z − y . . . . . . 2 simplifying x − z x + y − z z ,we get ( x − z ) ( y − z ) x y − z 2 = − ( y − z ) 2 x y − z 2 . . . . b e c a u s e ( x − z ) = ( z − y ) = − ( y − z ) 2 ( 2 z − y ) y − z 2 . . . f r o m 2 = − ( y − z ) 2 2 z y − y 2 − z 2 = − ( y − z ) 2 − ( y − z ) 2 = 1
Nice solution! There is a small typo mistake in 2nd last step. I guess its 2 z y instead of 2 z .
From JEE point of view just plug in x = 1 , y = 3 , z = 2 :)
Log in to reply
I also solved in jee style by keeping x=2 , y= 0 , z=1
We have, x + y = 2 z So, y − z = z − x Now, x − z x + y − z z = z − x − x + y − z z = z − x − x + z − x z = z − x − x + z = 1
Same solution :D
given that x+y=2z.... x-z=z-y=k.... (x/k)-(y/k)=(x-y)/k=k/k=1
x+y= 2z,then y = 2z-x, so (x/x-z) + (z/y-x) = (x/x-z) + (z/2z-x-z) = (x/x-z) + (z/z-x) = (x/x-z) - (z/x-x) = x-z/x-z =1
x+y=2z =>y=2z-x y-z becomes z-x or -(x-z) So z/(y-z) becomes -z/(x-z) Adding x/(x-z) and -z/(x-z) gives 1
Problem Loading...
Note Loading...
Set Loading...
x + y = 2 z ⇔ y = 2 z − x
⇒ x − z x + y − z z ⇔ x − z x + 2 z − x − z z
⇔ x − z x + z − x z
⇔ x − z x − x − z z = x − z x − z = 1
□