Oh variables

Algebra Level 2

x x z + z y z \large \frac{\color{#D61F06}{x}}{\color{#D61F06}{x}-\color{#3D99F6}{z}} + \frac{\color{#3D99F6}{z}}{\color{#D61F06}{y}-\color{#3D99F6}{z}}

If x + y = 2 z \color{#D61F06}{x} + \color{#D61F06}{y} = 2\color{#3D99F6}{z} and x z , \color{#D61F06}{x} \ne \color{#3D99F6}{z}, find the value of the expression above.

1 3 2 0.5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Cleres Cupertino
Oct 9, 2015

x + y = 2 z y = 2 z x x+y=2z \Leftrightarrow y=2z-x

x x z + z y z x x z + z 2 z x z \Rightarrow \dfrac{x}{x-z}+\dfrac{z}{y-z} \Leftrightarrow \dfrac{x}{x-z}+\dfrac{z}{2z-x-z}

x x z + z z x \Leftrightarrow \dfrac{x}{x-z}+\dfrac{z}{z-x}

x x z z x z = x z x z = 1 \Leftrightarrow \dfrac{x}{x-z}-\dfrac{z}{x-z}=\dfrac{x-z}{x-z}=\boxed{1}

\square

@Cleres Cupertino Try to use \dfrac;that makes the fractions look bigger and easier to read

Abdur Rehman Zahid - 5 years, 7 months ago

Log in to reply

Could you toggle to Latex just to check??? Or are you talking about the \frac command??? Because i made in \dfrac. I believe the real reason are the parentheses .

Cleres Cupertino - 5 years, 7 months ago
Kay Xspre
Oct 7, 2015

x x z + z y z = x ( y z ) + z ( x z ) ( x y ) ( x z ) = x y x z + x z z 2 x y z ( x + y ) + z 2 \dfrac{x}{x-z}+\dfrac{z}{y-z} = \dfrac{x(y-z)+z(x-z)}{(x-y)(x-z)} = \dfrac{xy-xz+xz-z^2}{xy-z(x+y)+z^2}

We just need to simplify and use x + y = 2 z x+y = 2z , then we will get x y z 2 x y z ( 2 z ) + z 2 = x y z 2 x y z 2 = 1 \frac{xy-z^2}{xy-z(2z)+z^2} = \frac{xy-z^2}{xy-z^2} = 1

Same way here ^_^

Rohit Udaiwal
Oct 6, 2015

we have x + y = 2 z x+y=2z .Let's try to obtain some equations from x + y = 2 z x+y=2z . x z = z y . . . . . . 1 x = 2 z y . . . . . . 2 x-z=z-y......1 \\ x=2z-y......2 simplifying x x z + z y z \dfrac{x}{x-z}+\dfrac{z}{y-z} ,we get x y z 2 ( x z ) ( y z ) = x y z 2 ( y z ) 2 . . . . b e c a u s e ( x z ) = ( z y ) = ( 2 z y ) y z 2 ( y z ) 2 . . . f r o m 2 = 2 z y y 2 z 2 ( y z ) 2 = ( y z ) 2 ( y z ) 2 = 1 \dfrac{xy-z^{2}}{(x-z)(y-z)}=\dfrac{xy-z^{2}}{-(y-z)^{2}}....because (x-z)=(z-y) \\ =\dfrac{(2z-y)y-z^{2}}{-(y-z)^{2}}...from2 \\ =\dfrac{2zy-y^{2}-z^{2}}{-(y-z)^{2}} \\ =\dfrac{-(y-z)^{2}}{-(y-z)^{2}}=\boxed{1}

Nice solution! There is a small typo mistake in 2nd last step. I guess its 2 z y 2zy instead of 2 z 2z .

From JEE point of view just plug in x = 1 , y = 3 , z = 2 x=1 \ , \ y=3 \ , \ z=2 :)

Nihar Mahajan - 5 years, 8 months ago

Log in to reply

I also solved in jee style by keeping x=2 , y= 0 , z=1

Akhil Bansal - 5 years, 8 months ago
Manish Mayank
Oct 9, 2015

We have, x + y = 2 z x+y=2z So, y z = z x y-z = z-x Now, x x z + z y z \dfrac{x}{x-z} + \dfrac{z}{y-z} = x z x + z y z =\dfrac{-x}{z-x} + \dfrac{z}{y-z} = x z x + z z x =\dfrac{-x}{z-x} + \dfrac{z}{z-x} = x + z z x = \dfrac{-x+z}{z-x} = 1 = \boxed {1}

Same solution :D

Thomas James Bautista - 5 years, 8 months ago
Shubhankur Kumar
Oct 8, 2015

given that x+y=2z.... x-z=z-y=k.... (x/k)-(y/k)=(x-y)/k=k/k=1

Sadasiva Panicker
Oct 10, 2015

x+y= 2z,then y = 2z-x, so (x/x-z) + (z/y-x) = (x/x-z) + (z/2z-x-z) = (x/x-z) + (z/z-x) = (x/x-z) - (z/x-x) = x-z/x-z =1

Lavakumar Karne
Oct 9, 2015

x+y=2z =>y=2z-x y-z becomes z-x or -(x-z) So z/(y-z) becomes -z/(x-z) Adding x/(x-z) and -z/(x-z) gives 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...