Ohh! my Integration

Calculus Level 2

Evaluate 3 x 2 + 2 x + 5 x 2 + 4 x + 6 d x . \large \int \dfrac{3x^2 + 2x+5}{x^2 + 4x+6} \, dx .

Clarification : C C in arbitrary constant of integration.

3 x 5 ln x 2 + 4 x 6 + 7 2 T A N X 1 x + 2 2 + C 3x-5 \ln \mid x^2 + 4x - 6 \mid + \dfrac{7}{\sqrt{2}}\ce{TAN^{-1}}\dfrac{x+2}{\sqrt{2}}+C 3 x 5 ln x 2 + 4 x + 6 + 7 2 T A N X 1 x + 2 2 + C 3x-5 \ln \mid x^2 + 4x + 6 \mid + \dfrac{7}{\sqrt{2}}\ce{TAN^{-1}}\dfrac{x+2}{\sqrt{2}}+C 3 x 5 ln x 2 + 4 x + 6 + 7 2 T A N X 1 x 2 2 + C 3x-5 \ln \mid x^2 + 4x + 6 \mid + \dfrac{7}{\sqrt{2}}\ce{TAN^{-1}}\dfrac{x-2}{\sqrt{2}}+C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Those who are beginners and interested of calculus

Steps for 3 x 2 + 2 x + 5 x 2 + 4 x + 6 d x \int \frac{3x^2+2x+5}{x^2+4x+6}\,dx

3 x 2 + 2 x + 5 x 2 + 4 x + 6 d x = ( 3 10 x + 13 x 2 + 4 x + 6 ) Use polynomial division = 3 d x 10 x + 13 x 2 + 4 x + 6 d x u = a x 2 + b x + c ; d u = 2 x + 4 = 3 x 10 x + 20 x 2 + 4 x + 6 d x + 7 1 x 2 + 4 x + 6 d x = 3 x 5 ln u + 7 1 x 2 + 4 x + 6 d x = 3 x 5 ln x 2 + 4 x + 6 + 7 1 x 2 + 4 x + 6 a x 2 + b x + c = c + ( x a + b 2 a ) 2 b 2 4 a = 3 x 5 ln x 2 + 4 x + 6 + 7 1 ( x + 2 ) 2 + 2 = 3 x 5 ln x 2 + 4 x + 6 + 7 1 u 2 + 2 d u u = x + 2 ; d u = 1 = 3 x 5 ln x 2 + 4 x + 6 + 7 1 ( x + 2 ) 2 + 2 = 3 x 5 ln x 2 + 4 x + 6 + 7 2 2 1 v 2 + 1 d v v = 2 2 u = 3 x 5 ln x 2 + 4 x + 6 + 7 2 2 T A N 1 v Substitule back all = 3 x 5 ln x 2 + 4 x + 6 + 7 2 2 T A N 1 ( 2 2 ( x + 2 ) ) + C \begin{aligned} \int \frac{3x^2+2x+5}{x^2+4x+6}\,dx &=\int \left(3-\frac{10x+13}{x^2+4x+6}\right) \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad{\text{Use polynomial division}} \\&= \int 3\,dx - \int \frac{10x+13}{x^2+4x+6}\,dx \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad{u=ax^2+bx+c; du=2x+4}\\&= 3x - \int \frac{10x+20}{x^2+4x+6}\,dx + 7 \int \frac{1}{x^2+4x+6}\,dx \\&=3x-5\ln \mid u \mid +7\int \frac{1}{x^2+4x+6}\,dx \\&= 3x-5 \ln \mid x^2+4x+6 \mid +7 \int \frac{1}{x^2+4x+6} \quad\quad\quad\quad{ax^2+bx+c = c+\left(x\sqrt{a}+\frac{b}{2\sqrt{a}}\right)^2-\frac{b^2}{4a}}\\&= 3x-5 \ln \mid x^2+4x+6 \mid +7 \int \frac{1}{(x+2)^2+2} \\&= 3x-5 \ln \mid x^2+4x+6 \mid +7 \int \frac{1}{u^2+2}\,du \quad\quad\quad\quad\quad\quad\quad{u=x+2; du =1} \\&=3x-5 \ln \mid x^2+4x+6 \mid +7 \int \frac{1}{(x+2)^2+2} \\&= 3x-5 \ln \mid x^2+4x+6 \mid +\frac{7\sqrt{2}}{2} \int \frac{1}{v^2+1}\,dv \quad\quad\quad\quad\quad\quad\quad\quad\quad{v=\frac{\sqrt{2}}{2}u}\\&= 3x-5 \ln \mid x^2+4x+6 \mid +\frac{7\sqrt{2}}{2} \ce{TAN}^{-1}v \quad\quad\quad\quad\quad\quad{\text{Substitule back all}} \\&=3x-5 \ln \mid x^2+4x+6 \mid +\frac{7\sqrt{2}}{2}\ce{TAN}^{-1}\left( \frac{\sqrt{2}}{2}(x+2)\right)+\ce{C}\space \square \end{aligned}


Study carefully this child!

ADIOS!!! \LARGE \text{ADIOS!!!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...