∫ 0 2 2 x arcsin x d x = b a G + d c π k ln ( m ) ,
where a , b , c , d , k , m are positive integers and g cd ( a , b ) = g cd ( c , d ) = 1 , and G is the Catalan constant.
Find a + b + c + d + k + m .
Note: The Catalan constant G is defined by G = n = 0 ∑ ∞ ( 2 n + 1 ) 2 ( − 1 ) n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
There is an elementary way. Set I = ∫ 0 π / 4 ln ( cos x ) d x and J = ∫ 0 π / 4 ln ( sin x ) d x then find I + J and I − J .
Nicely done! :)
Nice one! Really nice idea.
Firstly, it is quite easy to show that:
G = n = 0 ∑ ∞ ( 2 n + 1 ) 2 ( − 1 ) n = 0 ∫ 1 x 1 0 ∫ x n = 0 ∑ ∞ ( − 1 ) n t 2 n d t
⇒ G = 0 ∫ 1 x arctan x d x
Putting x = tan t ,
G = ∫ 0 π / 4 2 t csc 2 t d t
Applying by parts, we get :
G = ∫ 0 π / 4 ln ( cot t ) d t
Note: This identity(without proof) is given at the wiki page on Catalan constant.
Now, Let ∫ 0 π / 4 ln ( sin t ) d t = I 1 , and ∫ 0 π / 4 ln ( cos t ) d t = I 2 .
Then, I 1 + I 2 = ∫ 0 π / 4 ln ( 2 sin 2 t ) d t = 2 − π ln 2
Also, I 2 − I 1 = ∫ 0 π / 4 ln ( cot t ) d t = G
Hence, we get I 1 = ∫ 0 π / 4 ln ( sin t ) d t = − 4 π ln 2 − 2 G
Now, Putting x = sin t in I = ∫ 0 1 / 2 x arcsin x d x , we get:
I = ∫ 0 π / 4 t cot t d t
Now, applying by parts, we get:
I = t ln ( sin t ) ∣ ∣ ∣ ∣ 0 π / 4 − ∫ 0 π / 4 ln ( sin t ) d t
= 2 G + 8 π ln ( 2 )
Really brilliant idea!! The first step is just too good!! ⌣ ¨
0.730181058376564+ determined (1/ 2) G + (Pi/ 8) Ln 2.
Problem Loading...
Note Loading...
Set Loading...
Let us first substitute x = sin θ . Our integral now becomes:
∫ 0 π / 4 θ cot θ d θ = I (say)
Now we shall use integration by parts:
I = θ ln sin θ ∣ 0 π / 4 − ∫ 0 π / 4 ln sin θ d θ
∴ I = − 8 π ln 2 − ∫ 0 π / 4 ln sin θ d θ
Now consider the Taylor expansion of ( − ln ( 1 − x ) ) :
− ln ( 1 − x ) = x + 2 x 2 + 3 x 3 + . . .
Replacing x by e i 2 θ we get:
− ln ( 2 sin θ ) − i ( θ − 2 π ) = r = 1 ∑ ∞ r e i 2 r θ
Comparing the real parts on both sides we get:
ln sin θ = − ( r = 1 ∑ ∞ r cos 2 r θ ) − ln 2
Thus ∫ 0 π / 4 ln sin θ d θ = − ∫ 0 π / 4 ( ( r = 1 ∑ ∞ r cos 2 r θ ) + ln 2 ) d θ
= − ( ( 2 1 r = 1 ∑ ∞ r 2 sin 2 r π ) + 4 π ln 2 )
= − ( 2 G + 4 π ln 2 )
Thus I = 2 G + 8 π ln 2