Old exciting formula!

Algebra Level 2

2 i ln ( 1 i 1 + i ) \large 2i\ln \left(\frac {1-i}{1+i}\right)

Which of the options is a value of the expression above.

Notation: i = 1 i = \sqrt {-1} denotes the imaginary unit .

e e π \pi i i π 2 6 \frac {\pi^2}6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Brian Moehring
Jul 7, 2018

We have 1 i 1 + i = i = e π i ( 1 2 + 2 n ) , for any integer n \frac{1-i}{1+i} = -i = e^{\pi i \left(-\frac{1}{2} + 2n\right)}, \text{ for any integer } n

Therefore, 2 i ln ( 1 i 1 + i ) = 2 i ( π i ( 1 2 + 2 n ) ) = ( 1 4 n ) π 2i \ln\left(\frac{1-i}{1+i}\right) = 2i \cdot \left(\pi i \left(-\frac{1}{2} + 2n\right)\right) = \left(1 - 4n\right)\pi

We select the branch given by n = 0 n=0 to get an answer of π \pi (also note that none of the other answers is an integer multiple of π \pi , so they cannot be correct).

NOTE AND WARNING: The complex logarithm is multi-valued, so it only makes sense to say that it equals a particular value on a given branch, not in general. In particular, unless you are equipped to deal with a multi-valued logarithm, most of the standard properties of the real logarithm do not hold for the complex logarithm.

z = 2 i ln ( 1 i 1 + i ) = 2 i ln ( ( 1 i ) 2 ( 1 + i ) ( 1 i ) ) = 2 i ln ( 2 i 2 ) = 2 i ln ( i ) Consider only the principal value and = 2 i ln ( e π 2 i ) by Euler’s formula: e θ i = cos θ + i sin θ = 2 i ( π 2 i ) = π \begin{aligned} z & = 2i\ln \left(\frac {1-i}{1+i} \right) \\ & = 2i\ln \left(\frac {(1-i)^2}{(1+i)(1-i)} \right) \\ & = 2i \ln \left(\frac {-2i}{2} \right) \\ & = 2i \ln ({\color{#3D99F6}-i}) & \small \color{#3D99F6} \text{Consider only the principal value and} \\ & = 2i \ln \left({\color{#3D99F6}e^{-\frac \pi 2 i}} \right) & \small \color{#3D99F6} \text{by Euler's formula: }e^{\theta i} = \cos \theta + i \sin \theta \\ & = 2i \left(-\frac \pi 2 i \right) \\ & = \boxed{\pi} \end{aligned}

we have: so:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...