Old School

Geometry Level pending

What is the sum of all the roots of following trigonometry equation:

c o s ( X ) = 0.29901805 g i v e n t h a t 0 X 20 π cos(X)\quad =\quad 0.29901805\\ given\quad that\quad \quad 0\le X\le 20\pi

X X is in radians, not degrees.


The answer is 628.32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Syed Baqir
Apr 9, 2015

cos(X)\quad =\quad 0.29901805\ \therefore \quad X\quad =\quad 1.26713287\ \ General\quad Solution:\quad \ X\quad =\quad \pm \quad 1.2671328\quad \pm \quad 2\pi N\ where\quad N\quad =\quad 0,1,2,3,...\ \therefore \quad X\quad =\quad 1.2671328\quad +\quad 2\pi N\quad \quad \because \quad X\quad =\quad -1.2671328\quad \pm \quad 2\pi N\ We\quad will\quad Ignore\quad -1.2671328\quad -\quad 2\pi N\quad ;\quad \because \quad 1.2671328\quad -\quad 20\pi \quad \nRightarrow \quad (Do\quad Not\quad Satisfy)\quad 0\quad \le \quad X\quad \le \quad 20\pi \ \ Since\quad We\quad want\quad Sum\quad of\quad the\quad Roots\quad \ \therefore \quad Form\quad Arithmetic\quad Series\quad starting\quad with\quad N\quad =\quad 0\quad and\quad last\quad term\quad will\quad be\quad N\quad =\quad 572,\quad 573\ a=\quad \quad 1.2671328\quad ,\quad N\quad =\quad 572\quad \Rightarrow \quad (Only\quad implies)\quad +\quad 1.2671328\quad +\quad 20\pi \quad ,\quad Last\quad Term\quad l=\quad 3595.249129\ a=\quad -1.2671328,\quad N=\quad 573\quad \Rightarrow \quad 1.2671328\quad -\quad 20\pi \quad ,\quad l\quad =\quad 3598.998048\quad \ Using\quad Arithmetic\quad Formula:\ \frac { 1 }{ 2 } N(A+L)\quad +\quad \frac { 1 }{ 2 } N(A+L)\quad =\quad \frac { 1 }{ 2 } \times 572(1.2671328\quad +\quad 3595.249129)\quad +\quad \frac { 1 }{ 2 } \times 573(-1.2671328+3598.998048)\ \therefore \quad Sum\quad of\quad all\quad the\quad possible\quad roots\quad =\quad 2059353.558

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...