Olympiad for grade 10

Algebra Level 4

Let a , b , c > 0 , a b c = 1 a,b,c> 0,abc=1 Let the minimum of P is M P = a 2 2 + 2 a b + b 2 2 + 2 b c + c 2 2 + 2 c a P= \frac{a^2}{\sqrt{2+2ab}}+\frac{b^2}{\sqrt{2+2bc}}+\frac{c^2}{\sqrt{2+2ca}} If M = m n M=\frac{m}{n} Find the value of m+n if gcd m , n = 1 \gcd{m,n}=1


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Son Nguyen
Jan 16, 2016

By applying Titu's Lemma(Engel) we have: P ( a + b + c ) 2 2 + 2 a b + 2 + 2 b c + 2 + 2 c a P\geq \frac{(a+b+c)^2}{\sqrt{2+2ab}+\sqrt{2+2bc}+\sqrt{2+2ca}} Let 2 + 2 a b + 2 + 2 b c + 2 + 2 c a = N \sqrt{2+2ab}+\sqrt{2+2bc}+\sqrt{2+2ca}=N By applying C-S inequality: N 2 3 ( 2 a b + 2 b c + 2 c a + 6 ) N^2\leq 3(2ab+2bc+2ca+6) 2 a b + 2 b c + 2 c a 6 2 a 2 + 2 b 2 + 2 c 2 ( a b c = 1 a 2 + b 2 + c 2 3 ) 2ab+2bc+2ca\leq 6\leq 2a^2+2b^2+2c^2(abc=1\rightarrow a^2+b^2+c^2\geq 3) N 6 \Rightarrow N\leq 6 Since a + b + c 3 ( a b c = 1 ) a+b+c\geq 3(abc=1) So P 3 2 = M = m n P\geq \frac{3}{2}=M=\frac{m}{n} m + n = 5 \rightarrow m+n=5

Because a b + b c + c a ( a + b + c ) 2 3 ab+bc+ca\leq \frac{(a+b+c)^{2}}{3}

So 2 a b + 2 b c + 2 c a 6 2 a 2 + 2 b 2 + 2 c 2 ( a b c = 1 a 2 + b 2 + c 2 3 ) 2ab+2bc+2ca\leq 6\leq 2a^2+2b^2+2c^2(abc=1\rightarrow a^2+b^2+c^2\geq 3) You can check back @Gurīdo Cuong

Son Nguyen - 5 years, 4 months ago

Log in to reply

Rewrite N N = 2 ( 1 + a b ) + 2 ( 1 + a c ) + 2 ( 1 + b c ) N=\sqrt{2(1+ab)}+\sqrt{2(1+ac)}+\sqrt{2(1+bc)} Using Cauchy - Schwartz we get N 6 ( 3 + a b + b c + c a ) N\leq\sqrt{6(3+ab+bc+ca)} We've got 9 ( a + c + b ) 2 9\leq(a+c+b)^2 and 3 ( a b + b c + a c ) ( a + b + c ) 2 3(ab+bc+ac)\leq(a+b+c)^2 6 ( 3 + a b + b c + a c ) = 2.9 + 2.3 ( a b + b c + a c ) 2 ( a + b + c ) \Rightarrow\sqrt{6(3+ab+bc+ac)}=\sqrt{2.9+2.3(ab+bc+ac)}\leq2(a+b+c) So N 2 ( a + b + c ) N\leq2(a+b+c) P a + b + c 2 3 2 \Rightarrow P\geq\frac{a+b+c}{2}\geq\frac{3}{2} Using AM-GM inequality

P C - 5 years, 4 months ago

Log in to reply

That's right

Department 8 - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...