Let x,y,z be positive reals for which:
Find the minimum value of:
If the minimum value can be expressed in the form a + c, then find a + b + c
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Frist note that :
x x + y z + y y + z x + z z + x y = x y z x y z + ( y z ) 2 + x y z + ( z x ) 2 + x y z + ( x y ) 2
= x y z 3 x y z + ∑ ( x y ) 2
x y z 3 x y z + 6 x y z = 9
Applying generalised power mean equality we get :
( 3 ∑ x + y z x ) 2 ≥ ∑ x x + y z 3
From which we directly get :
∑ x + y z x ≥ 3