Olympiad Problem 1

Algebra Level 5

Let x,y,z be positive reals for which:

c y c ( x y ) 2 = 6 x y z \sum_{cyc} (xy)^{2}=6xyz

Find the minimum value of:

c y c x x + y z \sum_{cyc} \sqrt{\frac{x}{x+yz}}

If the minimum value can be expressed in the form a b \sqrt{b} + c, then find a + b + c


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ronak Agarwal
Aug 21, 2014

Frist note that :

x + y z x + y + z x y + z + x y z = x y z + ( y z ) 2 + x y z + ( z x ) 2 + x y z + ( x y ) 2 x y z \frac { x+yz }{ x } +\frac { y+zx }{ y } +\frac { z+xy }{ z } =\frac { xyz+{ (yz) }^{ 2 }+xyz+{ (zx) }^{ 2 }+xyz+{ (xy })^{ 2 } }{ xyz }

= 3 x y z + ( x y ) 2 x y z =\frac { 3xyz+\sum { { (xy) }^{ 2 } } }{ xyz }

3 x y z + 6 x y z x y z = 9 \frac { 3xyz+6xyz }{ xyz } =9

Applying generalised power mean equality we get :

( x x + y z 3 ) 2 3 x + y z x ({ \frac { \sum { \sqrt { \frac { x }{ x+yz } } } }{ 3 } ) }^{ 2 }\ge \frac { 3 }{ \sum { \frac { x+yz }{ x } } }

From which we directly get :

x x + y z 3 \sum { \sqrt { \frac { x }{ x+yz } } } \ge \sqrt { 3 }

nice solution!

Kartik Sharma - 6 years, 9 months ago
Kinjal Saxena
Oct 3, 2014

The expression can be simplified to

1/(1+yz/X)^.5 +1/(1+zx/y)^.5 +1/(1+xy /z)^.5>=([1+1+1]^2)/A

(note that :A =1/[(1+yz/X)^.5 +(1+zx/y)^.5 +(1+xy/z)^.5])

Also, by cauchy schwartz. Inequality

(1+yz/X)+(1+zx/y)+(1+Xy/z) >=(A ^2)/3

This implies that

1/A>=1/[3.(3+€(xy)^2/xyz)]^.5 (note:€ stands for summation) Or 1/A>=1/(3(3+6xyz/xyz)]^.5

This implies that

(1+1+1)^2/A>=3^.5

Hence the answer is 4.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...