Omega 2

n = 1 Ω ( n ) τ ( n ) n 2 = π a b p prime 1 p 2 1 \large \sum_{n=1}^\infty \dfrac{\Omega(n)\tau(n)}{n^2}=\dfrac{\pi^a}{b} \sum_{p \text{ prime}}^\infty \dfrac{1}{p^2-1}

If the equation above holds true for integer constants a a and b b , find a + b a+b .

Notations :

  • Ω ( n ) \Omega(n) counts the number of prime factors of n n (with multiplicity)

  • τ ( n ) \tau(n) counts the number of divisors of n n .


The answer is 22.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Julian Poon
Feb 17, 2016

Disclaimer: I do not have a proof that this sum converges.

Ω ( n ) \Omega(n) is a completely additive function. That is, Ω ( a b ) = Ω ( a ) + Ω ( b ) \Omega(ab)=\Omega(a)+\Omega(b) , where a and b are positive integers.


Lemma: For a completely additive function, f 1 = 1 2 f ( n ) τ ( n ) f*1=\frac{1}{2}f(n)\tau(n)

Where * is the Dirichlet convolution.

Proof:

By definition of completely additive,

f ( n ) = f ( d ) + f ( n / d ) f(n)=f(d)+f(n/d)

f 1 = d n f ( n / d ) = d n ( f ( n ) f ( d ) ) = τ ( n ) f ( n ) d n f ( d ) ) = τ ( n ) f ( n ) f 1 f*1=\sum_{d\mid n} f(n/d)=\sum_{d\mid n} (f(n)-f(d))=\tau(n)f(n) - \sum_{d\mid n} f(d))=\tau(n)f(n) - f*1

Rearranging,

f 1 = 1 2 f ( n ) τ ( n ) f*1=\boxed{\frac{1}{2}f(n)\tau(n)}


Since Ω \Omega is a completely additive function,

2 Ω 1 = Ω ( n ) τ ( n ) 2\Omega*1=\Omega(n)\tau(n)

2 ζ ( 2 ) n = 1 Ω ( n ) n 2 = n = 1 Ω ( n ) τ ( n ) n 2 2\zeta(2)\sum_{n=1}^{\infty}\frac{\Omega(n)}{n^2}=\sum_{n=1}^{\infty}\frac{\Omega(n)\tau(n)}{n^2}

Also, since Ω = g 1 \Omega=g*1 , where g ( n ) = { 1 if n = p a , a > 0 0 otherwise g(n)=\begin{cases} 1 \text{ if } n=p^a, \quad a>0 \\ 0 \text{ otherwise} \end{cases}

n = 1 Ω ( n ) n 2 = ζ ( 2 ) n = 1 g ( n ) n 2 \sum_{n=1}^{\infty}\frac{\Omega(n)}{n^2}=\zeta(2)\sum_{n=1}^{\infty}\frac{g(n)}{n^2}

n = 1 g ( n ) n 2 = p is prime a = 1 1 p 2 a = p is prime 1 p 2 1 \sum_{n=1}^{\infty}\frac{g(n)}{n^2}=\sum _{p \text{ is prime}}\sum _{a=1}^{ \infty}\frac{1}{p^{2a}}=\sum _{p \text{ is prime}}\frac{1}{p^2-1}

Putting it all together,

n = 1 Ω ( n ) τ ( n ) n 2 = 2 ζ ( 2 ) 2 p is prime 1 p 2 1 \sum_{n=1}^{\infty}\frac{\Omega(n)\tau(n)}{n^2}=2\zeta(2)^2\sum _{p \text{ is prime}}\frac{1}{p^2-1}

Using the fact that ζ ( 2 ) = π 2 6 \zeta(2)=\frac{\pi^2}{6} ,

n = 1 Ω ( n ) τ ( n ) n 2 = π 4 18 p is prime 1 p 2 1 \sum_{n=1}^{\infty}\frac{\Omega(n)\tau(n)}{n^2}=\boxed{\frac{\pi^4}{18}\sum _{p \text{ is prime}}\frac{1}{p^2-1}}

Moderator note:

Because the LHS consists only of positive terms, I believe that your proof also demonstrates that it converges to the given value.

Intended solution(+1)

Aareyan Manzoor - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...