Omega

Algebra Level 4

X = ( 3 ω 2 + 2 ω + 7 2 ω 2 + 7 ω + 3 + 5 8 ω 8 5 ω 2 ) 2 \large{ X={ (\frac { 3{ \omega }^{ 2 }+2\omega +7 }{ 2{ \omega }^{ 2 }+7\omega +3 } +\frac { 5-8\omega }{ 8-5{ \omega }^{ 2 } } ) }^{ 2 } }

Find the value of X X

Hint: ω \omega and ω 2 { \omega }^{ 2 } are two of the cubic roots of 1


The answer is -3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Sanjeet Raria
Dec 27, 2014

Khaled Barie
Dec 27, 2014

since ω \omega is a cubic root of 1 1 therefore ω 3 = 1 \omega^3 = 1

In this step, I multiplied certain terms by 1 1 :

X = ( 3 ω 2 + ( 2 ω × 1 ) + ( 7 × 1 ) 2 ω 2 + 7 ω + 3 + ( 5 × 1 ) 8 ω 8 5 ω 2 ) 2 X = (\frac{3\omega^2 + (2\omega \times 1) + (7 \times 1)}{2\omega^2 + 7\omega + 3} + \frac{(5 \times 1 )- 8\omega}{8 - 5\omega^2} )^2

now substitute the ones by ω 3 \omega^3 :

X = ( 3 ω 2 + 2 ω 4 + 7 ω 3 2 ω 2 + 7 ω + 3 + 5 ω 3 8 ω 8 5 ω 2 ) 2 X = (\frac{3\omega^2 + 2\omega^4 + 7 \omega^3}{2\omega^2 + 7\omega + 3} + \frac{5 \omega^3 - 8\omega}{8 - 5\omega^2} )^2

Take ω 2 \omega^2 common factor from the first fraction and take ω -\omega from the second fraction so we have:

X = ( ω 2 ( 3 + 2 ω 2 + 7 ω ) 2 ω 2 + 7 ω + 3 + ω ( 8 5 ω 2 ) 8 5 ω 2 ) 2 X = (\frac{\omega^2(3 + 2\omega^2 + 7 \omega)}{2\omega^2 + 7\omega + 3} + \frac{-\omega(8-5 \omega^2)}{8 - 5\omega^2})^2

= ( ω 2 ω ) 2 =(\omega^2 - \omega)^2

= ( ± 3 i ) 2 = 3 i 2 = 3 =(± \sqrt{3} i)^2 = 3i^2 = \boxed{-3}

if ω^3 = 1

ω^3 - 1 = 0

( ω - 1 ) ( ω^2 + ω + 1 ) = 0

ω = 1 or ω^2 + ω + 1 = 0

Then why I get wrong , when I apply ω = 1 to the equation ?

you should have told that ω is a complex cubic root

De Silva - 6 years, 5 months ago

Log in to reply

it was mentioned that w and w^2 are cubic roots of unity, which means they are the two complex cube roots of unity

nishanth vemula - 6 years, 5 months ago
Chew-Seong Cheong
Dec 26, 2014

Since ω \omega and ω 2 \omega^2 are cubic roots of 1 1 , ω 2 + ω + 1 = 0 ω 2 = ω 1 \quad \Rightarrow \omega^2 + \omega + 1 = 0\quad \Rightarrow \omega^2 = - \omega - 1

Therefore,

X = ( 3 ω 2 + 2 ω + 7 2 ω 2 + 7 ω + 3 + 5 8 ω 8 5 ω 2 ) 2 X = \left( \dfrac {3\omega^2 + 2\omega + 7} {2\omega^2 + 7\omega + 3} + \dfrac {5 - 8\omega} {8-5\omega^2} \right)^2

= ( 3 3 ω + 2 ω + 7 2 2 ω 2 + 7 ω + 3 + 5 8 ω 8 + 5 + 5 ω 2 ) 2 \quad = \left( \dfrac {-3-3\omega + 2\omega + 7} {-2-2\omega^2 + 7\omega + 3} + \dfrac {5 - 8\omega} {8+5+5\omega^2} \right)^2

= ( 4 ω 1 + 5 ω + 5 8 ω 13 + 5 ω ) 2 \quad = \left( \dfrac {4-\omega} {1+5\omega} + \dfrac {5 - 8\omega} {13+5\omega} \right)^2

= ( ( 4 ω ) ( 13 + 5 ω ) + ( 1 + 5 ω ) ( 5 8 ω ) ( 5 8 ω ) ( 13 + 5 ω ) ) 2 \quad = \left( \dfrac {(4-\omega) (13+5\omega) + (1+5\omega)(5 - 8\omega)} {(5 - 8\omega)(13+5\omega)} \right)^2

= ( ( 52 + 7 ω 5 ω 2 ) + ( 5 + 17 ω 40 ω 2 ) ( 13 + 70 ω + 25 ω 2 ) ) 2 \quad = \left( \dfrac {(52+7\omega-5\omega^2) + (5+17\omega-40\omega^2) } {(13+70\omega+25\omega^2) } \right)^2

= ( ( 57 + 12 ω ) + ( 45 + 57 ω ) 12 + 45 ω ) 2 = ( ( 19 + 4 ω ) + ( 15 + 19 ω ) 4 + 15 ω ) 2 \quad = \left( \dfrac {(57+12\omega) + (45+57\omega) } {-12+45\omega } \right)^2 = \left( \dfrac {(19+4\omega) + (15+19\omega) } {-4+15\omega } \right)^2

= ( 34 + 23 ω 4 + 15 ω ) 2 = 1156 + 1564 ω + 529 ω 2 16 120 ω + 225 ω 2 \quad = \left( \dfrac {34+23\omega} {-4+15\omega } \right)^2 = \dfrac {1156+1564\omega+529\omega^2} {16-120\omega+225\omega^2}

= 627 + 1035 ω 209 355 ω = 3 ( 209 + 355 ω ) ( 209 + 355 ω ) = 3 \quad = \dfrac {627+1035\omega} {-209-355\omega} = \dfrac {3(209+355\omega)} {-(209+355\omega)} = \boxed{-3}

Slight calculation errors put me off the track in the end :(

Krishna Ar - 6 years, 5 months ago

Though a long solution can be shortened as below, the solutions by multiplication and division by ω \omega is by far better.
ω 2 + ω = 1 , ω 2 ω = 3 i . 2 ω 2 + 1 = = 3 i , 2 ω + 1 = + 3 i \omega ^2+\omega = - 1,~~~\omega ^2 - \omega = - \sqrt3i.\\ 2\omega ^2+1=~= - \sqrt3i , ~~~~2\omega +1= +\sqrt3i

Sameer Marathe
May 11, 2015

No need of doing complex maths just try to make numerator like denominator. Yes you only need to remember certain properties likeΠw³=1 andw²=1÷w(can't find omega on keypad

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...