OMITS 2015 Happy 2015!

The number 2015 ! 2015! ends with a lot of 0's.

What are the 3 digits that precede the trailing zeros of 2015 ! 2015! ?


The answer is 544.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mas Mus
Apr 30, 2015

This solution is very very very long....May be, somebody will give other solution.

Let us write 2015 ! 2015! on format like below:

2015 ! = ( 5 × 10 × 15 × 20 × 2010 × 2015 ) × ( 1 × 2 × 3 × 4 ) × ( 6 × 7 × 8 × 9 ) × × ( 2011 × 2012 × 2013 × 2014 ) = ( 5 403 × 403 ! ) × ( 1 × 2 × 3 × 4 ) × ( 6 × 7 × 8 × 9 ) × × ( 2011 × 2012 × 2013 × 2014 ) = ( 10 403 × 403 ! ) × 2 403 × ( 1 × 2 × 3 × 4 ) × ( 6 × 7 × 8 × 9 ) × × ( 2011 × 2012 × 2013 × 2014 ) 2015!\\=\color{#D61F06}{\left(5\times{10}\times{15}\times{20}\ldots\times{2010}\times{2015}\right)}\times\\{\left(1\times{2}\times{3}\times{4}\right)}\times{\left(6\times{7}\times{8}\times{9}\right)}\times{\ldots\times{\left(2011\times{2012}\times{2013}\times{2014}\right)}}\\=\color{#D61F06}{\left({5}^{403}\times{403!}\right)}\times\\{\left(1\times{2}\times{3}\times{4}\right)}\times{\left(6\times{7}\times{8}\times{9}\right)}\times{\ldots\times{\left(2011\times{2012}\times{2013}\times{2014}\right)}}\\=\color{#D61F06}{\left({10}^{403}\times{403!}\right)}\times{2^{-403}}\times\\{\left(1\times{2}\times{3}\times{4}\right)}\times{\left(6\times{7}\times{8}\times{9}\right)}\times{\ldots\times{\left(2011\times{2012}\times{2013}\times{2014}\right)}} .

Let us observe all product of each black item in the bracket. We can see that all last three digits of the product is 24 24 . So, we can say that the last three digits of

2015 ! 10 403 ( 403 ! ) × 2 403 ( × 24 × 24 × 24 × 24 ) 403 times ( 403 ! ) ( × 12 × 12 × 12 × 12 ) 403 times ( 403 ! ) × 12 403 ( m o d 1000 ) \begin{array}{c}&\dfrac{2015!}{{10}^{403}}&\equiv\color{#D61F06}{\left(403!\right)}\times{2^{-403}}\underbrace{\left(\times{24}\times{24}\times{24}\ldots\times{24}\right)}_\text{403 times}\\&\equiv\color{#D61F06}{\left(403!\right)}\underbrace{\left(\times{12}\times{12}\times{12}\ldots\times{12}\right)}_\text{403 times}\equiv\color{#D61F06}{\left(403!\right)}\times{{12}^{403}}\pmod{1000}\end{array}

Using same method above, we will determine the last three digits non zero of ( 403 ! ) \color{#D61F06}{\left(403!\right)} .

403 ! 10 80 ( 80 ! ) × ( 403 × 402 × 401 ) × 12 80 ( 80 ! ) × 406 × 12 80 ( m o d 1000 ) \begin{array}{c}&\dfrac{403!}{{10}^{80}}&\equiv\color{#D61F06}{\left(80!\right)}\times\left({403}\times{402}\times{401}\right)\times{{12}^{80}}\\&\equiv\color{#D61F06}{\left(80!\right)}\times{406}\times{{12}^{80}}\pmod{1000}\end{array}

And for 80 ! ~\color{#D61F06}{80!}

80 ! 10 16 ( 16 ! ) × 12 16 ( m o d 1000 ) \dfrac{80!}{{10}^{16}}\equiv\color{#D61F06}{\left(16!\right)}\times{{12}^{16}}\pmod{1000}

And the last for 16 ! ~\color{#D61F06}{16!}

16 ! 10 3 ( 3 ! ) × 16 × 12 3 96 × 12 3 ( m o d 1000 ) \dfrac{16!}{{10}^{3}}\equiv\color{#D61F06}{\left(3!\right)}\times{16}\times{{12}^{3}}\equiv96\times{{12}^{3}}\pmod{1000} .

Finally, we have

2015 ! 10 403 12 ( 403 + 80 + 16 + 3 ) × 406 × 96 12 502 × 976 4 502 × 3 502 × 976 ( m o d 1000 ) \begin{array}{c}&\dfrac{2015!}{{10}^{403}}&\equiv{12}^{(403+80+16+3)}\times{406}\times{96}\equiv{12}^{502}\times976\\&\equiv{4^{502}}\times{3^{502}}\times{976}\pmod{1000}\end{array} .

For simplicity, we will work with modulo 8 8 and 125 125 to use Euler's theorem. Now we have:

4 502 { 16 251 0 ( m o d 8 ) ( 4 ϕ ( 125 ) ) 5 × 4 2 16 ( m o d 125 ) 4^{502}\equiv\begin{cases}{16}^{251}\equiv0\pmod{8}\\\left(4^{\phi(125)}\right)^{5}\times{4^{2}}\equiv16\pmod{125}\end{cases}

and 3 502 { 9 251 1 ( m o d 8 ) ( 3 ϕ ( 125 ) ) 5 × 3 2 9 ( m o d 125 ) ~~3^{502}\equiv\begin{cases}9^{251}\equiv1\pmod{8}\\\left(3^{\phi(125)}\right)^{5}\times{3^{2}}\equiv9\pmod{125}\end{cases}

Note that ϕ ( 125 ) = ( 1 1 5 ) × 125 = 100 \phi(125)=\left(1-\dfrac{1}{5}\right)\times{125}=100

By using Chinese Reminder Theorem we shall get that 4 502 16 ( m o d 1000 ) 4^{502}\equiv16\pmod{1000}~~ and 3 502 9 ( m o d 1000 ) ~~3^{502}\equiv9\pmod{1000}

Hence,

2015 ! 10 403 4 502 × 3 502 × 976 16 × 9 × 976 140544 544 ( m o d 1000 ) \begin{array}{c}&\dfrac{2015!}{{10}^{403}}&\equiv{4}^{502}\times{3^{502}}\times{976}\equiv16\times{9}\times{976}\equiv140544\\&\equiv\boxed{\boxed{\boxed{\huge{544}}}}\pmod{1000}\end{array} .

I don't want to sound rude but the wording of the question makes very little sense

Dan Ley - 4 years, 7 months ago

So you want to ask "what are the three digits preceding the first appearance of zero in the expansion of this number?"
I was also confused by the question. I did not see what was being asked.

Richard Desper - 4 years, 7 months ago

I don't understand the question and not sure where the answer comes from. Please enlighten me.

Angel Vanderhoof - 5 years, 9 months ago

Log in to reply

For example, the 3 digits precede zero of 12345600000000 is 456

Mas Mus - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...