Omitted Progression-2

Algebra Level 2

____ , 1296 , ____ , 36 , ____ \large \ \text{\_\_\_\_} \ , \ 1296 \ , \ \text{\_\_\_\_} \ , \ 36 \ , \ \text{\_\_\_\_}

The above shows a geometric progression with only the second term and the fourth term given.

Which of the following is a possible sum of all the missing terms?


Try this.

7832 1332 7998 7776

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 28, 2016

Let the common ratio of the geometric progression be r r . Then we have:

1296 r 2 = 36 r 2 = 36 1296 = 1 36 r = 1 6 \begin{aligned} 1296r^2 & =36\\ \implies r^2 & =\frac {36}{1296}=\frac 1{36} \\ r & =\frac 16 \end{aligned}

The sum of the three missing terms is given below.

S = a 1 + a 3 + a 5 = 1296 r + 1296 r + 36 r = 1296 × 6 + 1296 6 + 36 6 = 7776 + 216 + 6 = 7998 \begin{aligned} S & = a_1+a_3 +a_5 \\ & = \frac {1296} r + 1296r+36r \\ & = 1296\times 6+ \frac {1296} 6 +\frac {36}6 \\ & =7776+216+6 \\ & =\boxed {7998} \end{aligned}

Sir, r 2 = 1 36 r^2=\dfrac{1}{36} .

A Former Brilliant Member - 4 years, 8 months ago

Log in to reply

Thanks, I have changed it.

Chew-Seong Cheong - 4 years, 8 months ago
Viki Zeta
Sep 28, 2016

Since they are in GP, the common ratio will be the same a n = a r n 1 ; a 1 = ? , a 2 = 1296 , a 3 = ? , a 4 = 36 , a 5 = ? a 2 a 1 = a 4 a 3 1296 a = 36 a r 2 36 = 1 r 2 r = 1 6 a 2 = 1296 a r = 1296 a ( 1 6 ) = 1296 a = 7776 ____________________________________________________________________ Therefore, sum of missing terms S m , is sum of first terms - sum of known terms S m = S 5 a 2 a 4 S m = 7776 1 ( 1 6 ) 5 1 1 6 1296 36 S m = 7776 1555 1296 1332 S m = 9330 1332 S m = 7998 \text{Since they are in GP, the common ratio will be the same} \\ a_n = ar^{n-1}; ~ a_1 = ?, ~ a_2 = 1296, ~ a_3 = ?, ~ a_4 = 36, ~ a_5 = ? \\ \dfrac{a_2}{a_1} = \dfrac{a_4}{a_3} \\ \dfrac{1296}{a} = \dfrac{36}{ar^2} \\ 36 = \dfrac{1}{r^2} \\ r = \dfrac{1}{6} \\ a_2 = 1296 \\ ar = 1296 \\ a(\dfrac{1}{6}) = 1296 \\ a = 7776 \\ \text{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_} \\ \text{Therefore, sum of missing terms } S_m \text{, is sum of first terms - sum of known terms}\\ S_m = S_5 - a_2 - a_4 \\ S_m = 7776 \cdot \dfrac{1 - (\dfrac{1}{6})^5}{1-\dfrac{1}{6}} - 1296 - 36 \\ S_m = 7776 \cdot \dfrac{1555}{1296} - 1332 \\ S_m = 9330 - 1332 \\ \boxed{\therefore S_m = 7998}

Don't you think that calculating 1 6 \dfrac16 to its fifth power would be a tedious and difficult task?

Anandmay Patel - 4 years, 8 months ago

Log in to reply

Oh! You have some other easier way? Anyway using calculator isn't difficult tho.

Viki Zeta - 4 years, 8 months ago

Log in to reply

Vicky,your approach is fine but we should not take the methods to the extent of calculating higher powers if there exist other easier methods.Anyway yours is fine:)

Anandmay Patel - 4 years, 8 months ago
Anandmay Patel
Sep 28, 2016

As the given sequence is in Geometric Progression,there should be some ’r’(common ratio), such that: \text{As the given sequence is in Geometric Progression,there should be some 'r'(common ratio), such that:} 1296 r 2 = 36 1296r^2=36 So by calculation, \text{So by calculation,} r = ± 1 6 r=\pm\dfrac16

But,it is very much clear that if we consider the common ratio as \text{But,it is very much clear that if we consider the common ratio as} 1 6 , -\dfrac16, then our final answer,i.e.,the sum of all the missing terms will be negative.But the options are positive.So we take the other case: \text{then our final answer,i.e.,the sum of all the missing terms will be negative.But the options are positive.So we take the other case:} As \text{As} r = 1 6 , r=\dfrac16, the last term will be 36r,the middle one 1296r, and the first one will be \text{the last term will be 36r,the middle one 1296r, and the first one will be} 1296 r \dfrac{1296}r . Adding,we get \text{Adding,we get} 7998 \textbf{7998} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...