Perimeters!

Geometry Level 3

In the diagram above, square A B C D ABCD has a side length of 1 1 and the inscribed F B E \triangle{FBE} has m F B E = 4 5 m\angle{FBE} = 45^{\circ} and the m B E C = 7 0 m\angle{BEC} = 70^{\circ} .

Find the perimeter of F E D \triangle{FED} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

In the figure, ray B x Bx is such that E B x = 20 \angle EBx=20{}^\circ and F B x = 25 \angle FBx=25{}^\circ . It is easy to see that C B E = 20 \angle CBE=20{}^\circ and F B A = 25 \angle FBA=25{}^\circ . Let G G be the intersection of B x Bx and E F EF and let E {E}' be the foot of the perpendicular from E E on B x Bx .
Right angled triangles E B C EBC and E B E EB{E}' are congruent, thus B E = B C = 1 ( 1 ) B{E}'=BC=1 \ \ \ \ \ (1) Similarly, if F {F}' is the foot of the perpendicular from F F on B x Bx , triangles F B A FBA and F B F FB{F}' are congruent, thus B F = B A = 1 ( 2 ) B{F}'=BA=1 \ \ \ \ \ (2) By ( 1 ) (1) and ( 2 ) (2) we conclude that B E = B F B{E}'= B{F}' This means that points E {E}' and F {F}' coincide and thus E E , E {E}' , F {F}' and F F are collinear. Hence, B E = B F = B G B{E}'=B{F}'=BG .
So, we have two pairs of congruent triangles: B C E B G E and B A F B G F \triangle BCE\cong \triangle BGE \ \ \ \ \ \text{and} \ \ \ \ \ \triangle BAF\cong \triangle BGF Consequently, C E = G E and F A = F G CE=GE \ \ \ \ \ \text{and} \ \ \ \ \ \ FA=FG Now, we tackle the perimeter P P of F E D \triangle FED : P = D F + F E + E D = D F + F G + G E + E D = D F + F A + C E + E D = D A + C D = 2 \begin{aligned} P & =DF+FE+ED \\ & =DF+FG+GE+ED \\ & =DF+FA+CE+ED \\ & =DA+CD \\ & =\boxed{2} \\ \end{aligned}

Rocco Dalto
Feb 6, 2021

Using the diagram above y = tan ( 2 5 ) y = \tan(25^{\circ}) and z = tan ( 2 0 ) z = \tan(20^{\circ}) and

y = tan ( 2 5 ) = tan ( 4 5 2 0 ) = 1 tan ( 2 0 ) 1 + tan ( 2 0 ) y = \tan(25^{\circ}) = \tan(45^{\circ} - 20^{\circ}) = \dfrac{1 - \tan(20^{\circ})}{1 + \tan(20^{\circ})} \implies

F D = 1 y = 1 tan ( 2 0 ) 1 + tan ( 2 0 ) \overline{FD} = 1 - y = \dfrac{1\tan(20^{\circ})}{1 + \tan(20^{\circ})} and D E = 1 tan ( 2 0 ) \overline{DE} = 1 - \tan(20^{\circ}) \implies

F E = 1 + tan 2 ( 2 0 ) 1 + tan ( 2 0 ) \overline{FE} = \dfrac{1 + \tan^2(20^{\circ})}{1 + \tan(20^{\circ})} \implies

The perimeter P F E D = 1 tan 2 ( 2 0 ) + 2 tan ( 2 0 ) + 1 + tan 2 ( 2 0 ) 1 + tan ( 2 0 ) = P_{FED} = \dfrac{1 - \tan^2(20^{\circ}) + 2\tan(20^{\circ}) + 1 + \tan^2(20^{\circ})}{1 + \tan(20^{\circ})} =

2 ( 1 + tan ( 2 0 ) ) 1 + tan ( 2 0 ) = 2 \dfrac{2(1 + \tan(20^{\circ}))}{1 + \tan(20^{\circ})} = \boxed{2} .

Let E D = a = 1 tan 2 0 ED=a = 1 - \tan 20^\circ and F D = b = 1 tan 2 5 FD=b=1-\tan 25^\circ . Then the perimeter is:

p = E D + F D + E F = E D + F D + E D 2 + F D 2 = a + b + a 2 + b 2 = 1 tan 2 0 + 1 tan 2 5 + ( 1 t a n \2 0 ) 2 + ( 1 tan 2 5 ) 2 = 1 tan 2 0 + 1 tan ( 4 5 2 0 ) + ( 1 t a n 2 0 ) 2 + ( 1 tan ( 4 5 2 0 ) ) 2 Let t = tan 2 0 = 1 t + 1 1 t 1 + t + ( 1 t ) 2 + ( 1 1 t 1 + t ) 2 = 1 t + 2 t 1 + t + ( 1 t ) 2 + ( 2 t 1 + t ) 2 = 1 t 2 + 2 t 1 + t + ( 1 t ) 2 ( 1 + t ) 2 + 4 t 2 ( 1 + t ) 2 = 1 + 2 t t 2 1 + t + ( 1 t 2 ) 2 + 4 t 2 1 + t = 1 + 2 t t 2 1 + t + t 4 + 2 t 2 + 1 1 + t = 1 + 2 t t 2 + t 2 + 1 1 + t = 2 ( 1 + t ) 1 + t = 2 \begin{aligned} p & = ED + FD + EF \\ & = ED + FD + \sqrt{ED^2+FD^2} \\ & = a + b + \sqrt{a^2+b^2} \\ & = 1 - \tan 20^\circ + 1 - \tan 25^\circ + \sqrt{(1-tan \20^\circ)^2+(1-\tan 25^\circ)^2} \\ & = 1 - \tan 20^\circ + 1 - \tan (45^\circ - 20^\circ) + \sqrt{(1-tan 20^\circ)^2+(1-\tan (45^\circ - 20^\circ))^2} & \small \blue{\text{Let }t = \tan 20^\circ} \\ & = 1 - t + 1 - \frac {1-t}{1+t} + \sqrt{(1-t)^2 + \left(1-\frac {1-t}{1+t}\right)^2} \\ & = 1 - t + \frac {2t}{1+t} + \sqrt{(1-t)^2 + \left(\frac {2t}{1+t}\right)^2} \\ & = \frac {1-t^2+2t}{1+t} + \sqrt{\frac {(1-t)^2(1+t)^2+4t^2}{(1+t)^2}} \\ & = \frac {1+2t-t^2}{1+t} + \frac {\sqrt{(1-t^2)^2+4t^2}}{1+t} \\ & = \frac {1+2t-t^2}{1+t} + \frac {\sqrt{t^4+2t^2+1}}{1+t} \\ & = \frac {1+2t-t^2+t^2 + 1}{1+t} \\ & = \frac {2(1+t)}{1+t} = \boxed 2 \end{aligned}

The remarkable thing here is that the perimeter is independent of C E B \angle CEB . As long as F B E = 4 5 \angle FBE=45^\circ , the perimeter of Δ D E F \Delta DEF will always be 2 2 . Knowing that, I wonder if there's a simpler proof?

Chris Lewis - 4 months ago

Log in to reply

I think my solution gives the answer, with ray B x Bx dividing F B E \angle FBE in a way that E B x = E B C \angle EBx=\angle EBC and F B x = F B A \angle FBx=\angle FBA , which is always feasible.

Thanos Petropoulos - 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...