One Coin, One Die

Take a fair die numbered 1 to 6 and a fair coin assigned with values tails=1 and heads=2.

Experiment A: Roll the die. Use the number showing to determine the number of times to flip the coin. Let the random variable X=the sum of the values of the coin flips.

Experiment B: Flip the coin. Use the value of the outcome to determine the number of times to roll the die. Let the random variable Y=the sum of the die rolls.

μ X = \mu_{X}= the mean outcome of experiment A

σ X = \sigma_{X}= the standard deviation of experiment A

μ Y = \mu_{Y}= the mean outcome of experiment B

σ Y = \sigma_{Y}= the standard deviation of experiment B

Which is true of these distributions?

μ X < μ Y , σ X > σ Y \mu_{X}<\mu_{Y}, \sigma_{X}>\sigma_{Y} μ X = μ Y , σ X < σ Y \mu_{X}=\mu_{Y}, \sigma_{X}<\sigma_{Y} μ X = μ Y , σ X > σ Y \mu_{X}=\mu_{Y}, \sigma_{X}>\sigma_{Y} μ X = μ Y , σ X = σ Y \mu_{X}=\mu_{Y}, \sigma_{X}=\sigma_{Y} μ X > μ Y , σ X > σ Y \mu_{X}>\mu_{Y}, \sigma_{X}>\sigma_{Y} μ X > μ Y , σ X < σ Y \mu_{X}>\mu_{Y}, \sigma_{X}<\sigma_{Y} μ X < μ Y , σ X < σ Y \mu_{X}<\mu_{Y}, \sigma_{X}<\sigma_{Y}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
May 9, 2018

Let C C be the outcome of a coin toss, and let D D be the outcome of a die roll. Then X = C 1 + C 2 + + C D X \; = \; C_1 + C_2 + \cdots + C_D , where C 1 , C 2 , . . . , C D C_1,C_2,...,C_D are independent, and all distributed as C C . Thus E [ t X D = k ] = E [ t C 1 + C 2 + + C k ] = E [ t C ] k = G C ( t ) k E[t^X|D=k] \; = \; E[t^{C_1+C_2+\cdots+C_k}] \; = \; E[t^C]^k \; = \; G_C(t)^k where G C G_C is the probability generating function of C C . Thus E [ t X D ] = G C ( t ) D E[t^X|D] \; = \; G_C(t)^D and hence G X ( t ) = E [ t X ] = E [ E [ t X D ] ] = G D ( G C ( t ) ) G_X(t) \; = \; E[t^X] \; = \; E[E[t^X|D]] \; = \; G_D(G_C(t)) Thus G X ( t ) = G D ( G C ( t ) ) G C ( t ) G X ( t ) = G D ( G C ( t ) ) G C ( t ) 2 + G D ( G C ( t ) ) G C ( t ) \begin{aligned} G_X'(t) & = \; G_D'(G_C(t))G_C'(t) \\ G_X''(t) & = \; G_D''(G_C(t))G_C(t)^2 + G_D'(G_C(t)) G_C''(t) \end{aligned} and since we know that μ X = G X ( 1 ) σ X 2 = G X ( 1 ) + G X ( 1 ) G X ( 1 ) 2 \mu_X \; = \; G_X'(1) \hspace{2cm} \sigma_X^2 \; = \; G_X''(1) + G_X'(1) - G_X'(1)^2 is it a simple bit of algebra to show that μ X = μ C μ D σ X 2 = μ C 2 σ D 2 + μ D σ C 2 \mu_X \; = \; \mu_C \mu_D \hspace{2cm} \sigma_X^2 \; = \; \mu_C^2 \sigma_D^2 + \mu_D \sigma_C^2 Similarly we can show that G Y ( t ) = G C ( G D ( t ) ) G_Y(t) = G_C(G_D(t)) and hence that μ Y = μ C μ D σ Y 2 = μ D 2 σ C 2 + μ C σ D 2 \mu_Y \; = \; \mu_C\mu_D \hspace{2cm} \sigma_Y^2 \; = \; \mu_D^2\sigma_C^2 + \mu_C \sigma_D^2 Since we have μ C = 3 2 \mu_C = \tfrac32 , σ C 2 = 1 4 \sigma_C^2 = \tfrac14 , μ D = 7 2 \mu_D = \tfrac72 , σ D 2 = 35 12 \sigma_D^2 = \tfrac{35}{12} , we easily calculate that μ X = μ Y = 21 4 σ X 2 = σ Y 2 = 119 16 \mu_X \; = \; \mu_Y \; = \; \tfrac{21}{4} \hspace{2cm} \sigma_X^2 \; = \; \sigma_Y^2 \; = \; \tfrac{119}{16}


If the die were n n -sided, we would have μ D = n + 1 2 \mu_D = \tfrac{n+1}{2} and σ D 2 = n 2 1 12 \sigma_D^2 = \tfrac{n^2-1}{12} , and then μ X = μ Y = 3 ( n + 1 ) 4 σ X 2 = σ Y 2 = ( n + 1 ) ( 3 n 1 ) 16 \mu_X \; = \; \mu_Y \; = \; \tfrac{3(n+1)}{4} \hspace{2cm} \sigma_X^2 \; = \; \sigma_Y^2 \; = \; \tfrac{(n+1)(3n-1)}{16} While μ X \mu_X and μ Y \mu_Y are always equal, and while σ X 2 \sigma_X^2 and σ Y 2 \sigma_Y^2 are the same for any fair n n -sided die, this will no longer be true if the die stops being fair. It is easy to see that the outcome σ X 2 = σ Y 2 \sigma_X^2 = \sigma_Y^2 is equivalent to the identity σ D 2 = 1 3 μ D ( μ D 1 ) \sigma_D^2 \; = \; \tfrac{1}{3}\mu_D(\mu_D-1) which holds for any fair die, but not for a biased die.

Jeremy Galvagni
Apr 30, 2018

Mean of X = mean of die times mean of coin = 3.5 1.5 = 5.25 3.5*1.5 = 5.25

Mean of Y = mean of coin times mean of die = 1.5 3.5 = 5.25 1.5*3.5 = 5.25

Both standard deviations are also the same and can be shown to equal 119 4 \frac{\sqrt{119}}{4}

x 6*chance of 64 probability x*p (x-mu)^2*p
1 32 0.08333333333 0.08333333333 1.505208333
2 48 0.125 0.25 1.3203125
3 40 0.1041666667 0.3125 0.52734375
4 44 0.1145833333 0.4583333333 0.1790364583
5 42 0.109375 0.546875 0.0068359375
6 43 0.1119791667 0.671875 0.06298828125
7 42 0.109375 0.765625 0.3349609375
8 39 0.1015625 0.8125 0.7680664063
9 30 0.078125 0.703125 1.098632813
10 17 0.04427083333 0.4427083333 0.9988606771
11 6 0.015625 0.171875 0.5166015625
12 1 0.002604166667 0.03125 0.11865234382
total 384 1 5.25 7.4375 variance
2.727178029 st dev
y count probability x*p (x-mu)^2*p
1 6 0.08333333333 0.08333333333 1.505208333
2 7 0.09722222222 0.1944444444 1.026909722
3 8 0.1111111111 0.3333333333 0.5625
4 9 0.125 0.5 0.1953125
5 10 0.1388888889 0.6944444444 0.008680555556
6 11 0.1527777778 0.9166666667 0.0859375
7 6 0.08333333333 0.5833333333 0.2552083333
8 5 0.06944444444 0.5555555556 0.5251736111
9 4 0.05555555556 0.5 0.78125
10 3 0.04166666667 0.4166666667 0.9401041667
11 2 0.02777777778 0.3055555556 0.9184027778
12 1 0.01388888889 0.1666666667 0.6328125
total 72 1 5.25 7.4375 variance
2.727178029 st dev

So μ X = μ Y \mu_{X}=\mu_{Y} and σ X = σ Y \sigma_{X}=\sigma_{Y}

It is not intuitively obvious that the standard deviations should be the same. Their histograms do not resemble one another but I worked them out exactly a few years ago. My guess is this would work with dice with different numbers of sides as well, but I cannot fathom a formula.

How come the standard deviations are the same?

Abhishek Sinha - 3 years, 1 month ago

Log in to reply

Honestly. I don't know why they are the same but I have now shown the calculations.

Jeremy Galvagni - 3 years, 1 month ago

See my solution for a detailed explanation, including for an n n -sided die.

Mark Hennings - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...