One Equation, One Variable!

Geometry Level 5

x ( 3 2 x + 5 ( 1 x 2 ) + 3 2 ) = 2 3 \large{ x \left ( \ \sqrt{3 - 2x + \sqrt{5(1-x^2)}} + \sqrt{\dfrac{3}{2}}\ \right) = \sqrt{\dfrac{2}{3}} }


If x = cos ( A π B + arccos ( C / D ) E ) \large{x = \cos \left( \dfrac{A\pi^B + \arccos (C/D) }{E} \right) } such that it satisfies the above equation, where A , B , C , D , E A,B,C,D,E are positive integers, find the minimum value of A + B + C + D + E A+B+C+D+E .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Satyajit Mohanty
Aug 14, 2015

The equation can be written as:

x 6 ( 3 2 x + 5 ( 1 x 2 ) ) = 2 3 x x\sqrt{6} \left( \sqrt{3 - 2x + \sqrt{5(1-x^2)} } \right) = 2 -3x

This equation for 0 < x < 2 / 3 0 < x < 2/3 is equivalent to:

6 x 2 ( 3 2 x + 5 ( 1 x 2 ) ) = ( 2 3 x ) 2 6x^2 \left( 3 - 2x + \sqrt{5(1-x^2)} \right) = (2 -3x)^2

Since ( 3 2 x ) 2 ( 2 3 x ) 2 = 5 ( 1 x 2 ) (3-2x)^2 - (2-3x)^2 = 5(1-x^2) , we can write the above equation as:

6 x 2 = ( 2 3 x ) 2 ( 3 2 x 5 ( 1 x 2 ) ) ( 3 2 x ) 2 5 ( 1 x 2 ) 6x^2 = \dfrac{(2 -3x)^2 (3 - 2x - \sqrt{5(1-x^2)}) }{(3-2x)^2 - 5(1-x^2)}

or 6 x 2 + 2 x 3 = 5 ( 1 x 2 ) 6x^2 + 2x - 3 = - \sqrt{5(1-x^2)}

Setting α = arccos ( 2 / 3 ) \alpha = \arccos(2/3) and x = cos ( θ ) x = \cos(\theta) , θ ( α , π / 2 ) \theta \in (\alpha, \pi /2) we get:

5 sin ( θ ) = 6 cos 2 ( θ ) + 2 cos ( θ ) 3 -\sqrt{5}\sin(\theta) = 6\cos^2 (\theta) + 2\cos(\theta) - 3

5 sin ( θ ) 2 cos ( θ ) 3 = 2 cos 2 ( θ ) 1 = cos ( 2 θ ) \Rightarrow \dfrac{-\sqrt{5}\sin(\theta) - 2\cos(\theta)}{3} = 2\cos^2(\theta) - 1 = \cos(2\theta)

cos ( θ α ) = cos ( π 2 θ ) \Rightarrow \cos(\theta - \alpha) = \cos(\pi - 2\theta)

Hence θ = π + α 3 , x = cos ( π + arccos ( 2 / 3 ) 3 ) \theta = \dfrac{\pi + \alpha}{3}, x = \cos \left( \dfrac{\pi + \arccos (2/3) }{3} \right) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...