One fold

Calculus Level 3

A B C D ABCD is a unit square of paper. A A is folded to E , E, a point on C D , CD, and B B goes to H , H, forming triangle G H I . GHI. Find the maximum possible area of triangle G H I . GHI.

This area can be written as A + B 7 C , \frac{A+B\sqrt{7}}{C}, where A , B , C A,B,C are integers with no common factors.

Give A + B + C A+B+C as your answer.


The answer is 251.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jeremy Galvagni
May 9, 2018

tan β = D E = 1 x \tan\beta=DE=1-x

α = 2 β \alpha=2*\beta

cos α = 1 tan 2 β 1 + tan 2 β = 2 x x 2 2 2 x + x 2 \cos\alpha = \frac{1-\tan^{2}\beta}{1+\tan^{2}\beta} = \frac{2x-x^{2}}{2-2x+x^{2}}

sin α = 2 2 x 2 2 x + x 2 \sin\alpha = \frac{2-2x}{2-2x+x^{2}}

F D E E C I G H I \triangle FDE \sim \triangle ECI \sim \triangle GHI

E I = x cos α EI=\frac{x}{\cos\alpha} , G H = G I cos α GH=GI\cos\alpha , H I = G I sin α HI=GI\sin\alpha

E I + I H = E H EI+IH=EH , so x cos α + G I sin α = 1 \frac{x}{\cos\alpha}+GI\sin\alpha=1 and solving for G I GI gives G I = cos α x cos α sin α GI=\frac{\cos\alpha-x}{\cos\alpha*\sin\alpha}

The area of G H I = 1 2 G H H I = 1 2 G I 2 cos α sin α = 1 2 ( cos α x cos α sin α ) 2 cos α sin α \triangle GHI=\frac{1}{2}GH*HI=\frac{1}{2}GI^{2}\cos\alpha\sin\alpha=\frac{1}{2}(\frac{\cos\alpha-x}{\cos\alpha\sin\alpha})^{2}*\cos\alpha\sin\alpha

after subbing in values for cos α \cos\alpha and sin α \sin\alpha and some simplifying we arive at

Area of G H I = A ( x ) = x 4 x 3 4 x 8 \triangle GHI = A(x) = \frac{x^{4}-x^{3}}{4x-8}

A quick graph shows us on the right track. Max is a bit under x = 0.8 x=0.8

Now for the simple calculus. The derivative, after simplifying, is A ( x ) = 4 x 2 ( 3 x 2 10 x + 6 ) 8 4 x 2 A'(x)=\frac{4x^{2}(3x^{2}-10x+6)}{8-4x^{2}}

A ( x ) = 0 A'(x)=0 implies x = 0 x=0 or 3 x 2 10 x + 6 = 0 3x^{2}-10x+6=0 . The solution of interest is x = 5 7 3 . 7847 x=\frac{5-\sqrt7}{3}\approx .7847

A ( 5 7 3 ) A(\frac{5-\sqrt7}{3}) after much simplifying is 316 119 7 54 \frac{316-119\sqrt7}{54}

So A = 316 A=316 , B = 119 B=-119 , and C = 54 C=54 which means A + B + C = 316 119 + 54 = 251 A+B+C=316-119+54=\boxed{251}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...