One limit. Difficult?

Calculus Level 3

lim n ( n ! ) 2 4 n ( 2 n ) ! = ? \large \lim_{n \to \infty} \frac {(n!)^2 4^n}{(2n)!}= \ ?

Find the value of the limit above. Submit 9999 if the limit is infinite ( \infty ).


The answer is 9999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First i tried the following:

Let u n = ( n ! ) 2 4 n ( 2 n ) ! u_{n}=\frac{(n!)^2 4^n}{(2n)!} . If l i m u n + 1 u n = a lim \frac {u_{n+1}}{u_{n}}=a and : 0 < a < 1 0<a<1 , l i m u n = 0 lim u_{n}=0 , 1 < a 1<a , u n = + u_{n}=+\infty . The result would turn out to be a=1 so this was inconclusive.

So I used the Stirling's Approximation:

n ! = 2 π n ( n e ) n \huge n!=\sqrt{2\pi n} (\frac{n}{e})^n

lim n + ( n ! ) 2 4 n ( 2 n ) ! = lim n + ( 2 π n ( n e ) n ) 2 4 n 4 π n ( 2 n e ) 2 n \huge\lim_{n \rightarrow +\infty}\frac{(n!)^2 4^n}{(2n)!}=\lim_{n \rightarrow +\infty}\frac{(\sqrt{2\pi n}(\frac{n}{e})^n)^2 4^n}{\sqrt{4\pi n}(\frac{2n}{e})^{2n}}

= lim n + 2 π n ( n e ) 2 n 2 2 n 2 n π ( 2 n e ) 2 n = lim n + 2 2 n + 1 n π ( n e ) 2 n 2 n π ( 2 n e ) 2 n \huge=\lim_{n \rightarrow +\infty}\frac{2\pi n (\frac {n}{e})^{2n} 2^{2n}}{2\sqrt{n}\sqrt{\pi}(\frac{2n}{e})^{2n}}=\lim_{n \rightarrow +\infty}\frac{2^{2n+1}n\pi(\frac {n}{e})^{2n}}{2\sqrt{n}\sqrt{\pi}(\frac{2n}{e})^{2n}}

= lim n + 2 2 n n π ( n e ) 2 n ( 2 n e ) 2 n = lim n + 2 2 n n π n 2 n e 2 n 2 2 n n 2 n e 2 n \huge=\lim_{n \rightarrow +\infty}\frac{2^{2n}\sqrt{n}\sqrt{\pi}(\frac {n}{e})^{2n}}{(\frac{2n}{e})^{2n}}=\lim_{n \rightarrow +\infty}\frac{2^{2n}\sqrt{n}\sqrt{\pi}\frac {n^{2n}}{e^{2n}}}{\frac{2^{2n}n^{2n}}{e^{2n}}}

= lim n + 2 2 n e 2 n n π n 2 n e 2 n 2 2 n n 2 n = lim n + 4 n n 2 + 1 2 π 2 2 n n 2 n \huge=\lim_{n \rightarrow +\infty}\frac{2^{2n}e^{2n}\sqrt{n}\sqrt{\pi}\frac {n^{2n}}{e^{2n}}}{{2^{2n}n^{2n}}}=\lim_{n \rightarrow +\infty}\frac{4^{n}n^{2+\frac{1}{2}}\sqrt{\pi}}{{2^{2n}n^{2n}}}

= lim n + 4 n n 4 n + 2 2 π 2 2 n n 2 n = lim n + 2 2 n π n 2 2 n \huge=\lim_{n \rightarrow +\infty}\frac{4^{n}n^{\frac{4n+2}{2}}\sqrt{\pi}}{{2^{2n}n^{2n}}}=\lim_{n \rightarrow +\infty}\frac{2^{2n}\sqrt{\pi}\sqrt{n}}{{2^{2n}}}

= π lim n + n = π × + = + \huge=\sqrt{\pi}\lim_{n \rightarrow +\infty}\sqrt{n}=\sqrt{\pi}\times +\infty=+\infty

Hi.. I think you are portuguese João Miguel Coelho. Obrigado pela resolução. Cheers

Jose Sacramento - 4 years, 4 months ago

Log in to reply

Sim, sou Português, de nada José!

Joao Miguel Coelho - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...