A calculus problem by Priyanshu Mishra

Calculus Level 3

Let f ( x ) = ( x 2 + 8 x + 20 ) e x f(x) = \left( { x }^{ 2 } + 8x + 20 \right) { e }^{ x } . Compute f ( 100 ) ( 2018 ) e 2018 \dfrac { f^{(100)}( 2018) }{ { e }^{ 2018 } } .

Notation: f ( n ) ( x ) f^{(n)}(x) denotes the n n th derivative of f ( x ) f(x) .


The answer is 4502788.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

f ( x ) = ( x 2 + 8 x + 20 ) e x f ( x ) = ( x 2 + 8 x + 20 ) e x + ( 2 x + 8 ) e x = f ( x ) + ( 2 x + 8 ) e x Note that ( 2 x + 8 ) e x = f ( x ) f ( x ) f ( x ) = f ( x ) + f ( x ) f ( x ) + 2 e x = 2 f ( x ) f ( x ) + 2 e x f ( x ) = 2 f ( x ) f ( x ) + 2 e x = 2 ( 2 f ( x ) f ( x ) + 2 e x ) f ( x ) + 2 e x = 3 f ( x ) 2 f ( x ) + 6 e x f ( 4 ) ( x ) = 4 f ( x ) 3 f ( x ) + 12 e x \begin{aligned} f(x) & = (x^2+8x+20)e^x \\ f'(x) & = (x^2+8x+20)e^x + (2x + 8)e^x = f(x) + \color{#3D99F6} (2x + 8)e^x & \small \color{#3D99F6} \text{Note that } (2x + 8)e^x = f'(x) - f(x) \\ f''(x) & = f'(x) + f'(x) - f(x) + 2e^x = 2f'(x) - f(x) + 2e^x \\ f'''(x) & = 2{\color{#3D99F6}f''(x)} - f'(x) + 2e^x = 2{\color{#3D99F6}(2f'(x) - f(x) + 2e^x)} - f'(x) + 2e^x = 3f'(x) - 2f(x) + 6e^x \\ f^{(4)}(x) & = 4f'(x) - 3f(x) + 12e^x \end{aligned}

It appears that we can claim that f ( n ) = n f ( x ) ( n 1 ) f ( x ) + n ( n 1 ) e x f^{(n)} = nf'(x) - (n-1)f(x) + n(n-1)e^x . Let us prove by induction that the claim is true for n 1 n \ge 1 . The claim is true for n = 1 n=1 and n = 2 n=2 . Now assuming it is true for n n , then

f ( n + 1 ) ( x ) = n f ( x ) ( n 1 ) f ( x ) + n ( n 1 ) e x = n ( 2 f ( x ) f ( x ) + 2 e x ) ( n 1 ) f ( x ) + ( n 2 n ) e x = ( n + 1 ) f ( x ) n f ( x ) + ( n + 1 ) n e x \begin{aligned} f^{(n+1)} (x) & = nf''(x) - (n-1)f'(x) + n(n-1)e^x \\ & = n(2f'(x) - f(x) + 2e^x) - (n-1)f'(x) + (n^2-n)e^x \\ & = (n+1)f'(x) - nf(x) + (n+1)ne^x \end{aligned}

Therefore, the claim is also true for n + 1 n+1 and hence true for all n 1 n \ge 1 . Now we have:

f ( 100 ) ( x ) = 100 f ( x ) 99 f ( x ) + 9900 e x = 100 ( x 2 + 10 x + 28 ) e x 99 ( x 2 + 8 x + 20 ) e x + 9900 e x = ( x 2 + 208 x + 10720 ) e x f ( 100 ) ( x ) e x = x 2 + 208 x + 10720 f ( 100 ) ( 2018 ) e 2018 = 201 8 2 + 208 ( 2018 ) + 10720 = 4502788 \begin{aligned} f^{(100)}(x) & = 100f'(x) - 99f(x) + 9900e^x \\ & = 100(x^2+10x+28)e^x - 99(x^2 + 8x+20)e^x + 9900e^x \\ & = (x^2 + 208x+10720)e^x \\ \implies \frac {f^{(100)}(x)}{e^x} & = x^2 + 208x+10720 \\ \frac {f^{(100)}(2018)}{e^{2018}} & = 2018^2 + 208(2018)+10720 \\ & = \boxed{4502788} \end{aligned}

Hassan Abdulla
Feb 3, 2018

l e t g ( x ) = x 2 + 8 x + 20 f ( x ) = g ( x ) e x f ( 1 ) ( x ) = ( g ( 1 ) ( x ) + g ( x ) ) e x f ( 2 ) ( x ) = ( g ( 2 ) ( x ) + 2 g ( 1 ) ( x ) + g ( x ) ) e x f ( 3 ) ( x ) = ( g ( 3 ) ( x ) + 3 g ( 2 ) ( x ) + 3 g ( 1 ) ( x ) + g ( x ) ) e x f ( n ) ( x ) = e x k = 0 n ( n k ) g ( k ) ( x ) g ( 1 ) ( x ) = 2 x + 8 g ( 2 ) ( x ) = 2 f o r k > 2 g ( k ) ( x ) = 0 f ( 100 ) ( x ) = e x k = 0 100 ( 100 k ) g ( k ) ( x ) = e x ( ( 100 0 ) g ( x ) + ( 100 1 ) g ( 1 ) ( x ) + ( 100 2 ) g ( 2 ) ( x ) + 0 + 0 + ) f ( 100 ) ( 2018 ) e 2018 = g ( 2018 ) + 100 g ( 1 ) ( 2018 ) + 4950 g ( 2 ) ( 2018 ) = 4502788 let\quad g\left( x \right) ={ x }^{ 2 }+8x+20\\ f\left( x \right) =g\left( x \right) { e }^{ x }\\ f^{ \left( 1 \right) }\left( x \right) =\left( g^{ \left( 1 \right) }\left( x \right) +g\left( x \right) \right) { e }^{ x }\\ f^{ \left( 2 \right) }\left( x \right) =\left( g^{ \left( 2 \right) }\left( x \right) +2g^{ \left( 1 \right) }\left( x \right) +g\left( x \right) \right) { e }^{ x }\\ f^{ \left( 3 \right) }\left( x \right) =\left( g^{ \left( 3 \right) }\left( x \right) +3g^{ \left( 2 \right) }\left( x \right) +3g^{ \left( 1 \right) }\left( x \right) +g\left( x \right) \right) { e }^{ x }\\ \vdots \\ f^{ \left( n \right) }\left( x \right) ={ e }^{ x }\sum _{ k=0 }^{ n }{ \left( \begin{matrix} n \\ k \end{matrix} \right) } g^{ \left( k \right) }\left( x \right) \\ g^{ \left( 1 \right) }\left( x \right) =2x+8\\ g^{ \left( 2 \right) }\left( x \right) =2\\ for\quad k>2\quad g^{ \left( k \right) }\left( x \right) =0\\ \Rightarrow f^{ \left( 100 \right) }\left( x \right) ={ e }^{ x }\sum _{ k=0 }^{ 100 }{ \left( \begin{matrix} 100 \\ k \end{matrix} \right) } g^{ \left( k \right) }\left( x \right) ={ e }^{ x }\left( \left( \begin{matrix} 100 \\ 0 \end{matrix} \right) g\left( x \right) +\left( \begin{matrix} 100 \\ 1 \end{matrix} \right) g^{ \left( 1 \right) }\left( x \right) +\left( \begin{matrix} 100 \\ 2 \end{matrix} \right) g^{ \left( 2 \right) }\left( x \right) +0+0+\dots \right) \\ \frac { f^{ \left( 100 \right) }\left( 2018 \right) }{ { e }^{ 2018 } } =g\left( 2018 \right) +100g^{ \left( 1 \right) }\left( 2018 \right) +4950g^{ \left( 2 \right) }\left( 2018 \right) =4502788

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...