One more of those

Geometry Level 4

cos ( 8 ) + cos ( 1 6 ) + cos ( 3 2 ) + cos ( 5 6 ) + + cos ( k ) + + cos ( 35 2 ) \cos(8^\circ)+\cos(16^\circ)+\cos(32^\circ)+\cos(56^\circ)+\ldots+\cos(k^\circ)+\ldots+\cos(352^\circ) Find the sum above, where 0 < k < 360 0<k<360 and gcd ( k , 360 ) = 8 \gcd(k,360)=8 .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
May 28, 2015

I will use these trigonometric identity repeatedly:

cos ( 2 π n ) + cos ( 4 π n ) + cos ( 6 π n ) + + cos ( ( n 1 ) π n ) = 1 2 \cos \left ( \frac{2\pi}{n} \right) + \cos \left ( \frac{4\pi}{n} \right) + \cos \left ( \frac{6\pi}{n} \right) + \ldots + \cos \left ( \frac{(n-1)\pi}{n} \right) = -\frac12 for all positive odd number n 3 n\geq 3 .

And cos ( π n ) + cos ( 3 π n ) + cos ( 5 π n ) + + cos ( ( n 2 ) π n ) = 1 2 \cos \left ( \frac{\pi}{n} \right) + \cos \left ( \frac{3\pi}{n} \right) + \cos \left ( \frac{5\pi}{n} \right) + \ldots + \cos \left ( \frac{(n-2)\pi}{n} \right) = -\frac12 for all positive odd number n 3 n\geq 3 .

The sum becomes

W = gcd ( k , 45 ) = 1 45 cos ( k π 45 ) = k odd 43 cos ( k π 45 ) + k even 44 cos ( k π 45 ) gcd ( k , 45 ) 1 45 cos ( k π 45 ) = gcd ( k , 45 ) 1 45 cos ( k π 45 ) W = gcd ( k , 45 ) = 3 45 cos ( k π 45 ) + gcd ( k , 45 ) = 5 45 cos ( k π 45 ) gcd ( k , 45 ) = 15 45 cos ( k π 45 ) = gcd ( k , 15 ) = 1 15 cos ( k π 15 ) + gcd ( k , 9 ) = 1 5 cos ( k π 9 ) gcd ( k , 3 ) = 1 3 cos ( k π 3 ) = gcd ( k , 15 ) = 1 15 cos ( k π 15 ) + gcd ( k , 9 ) = 1 5 cos ( k π 9 ) = k S 1 cos ( k π 15 ) k S 2 cos ( k π 15 ) \begin{aligned} \displaystyle W &=& \sum_{\text{gcd}(k,45)=1 }^{45} \cos \left( \frac {k \pi}{45} \right) \\ &=& \displaystyle \sum_{k \text{ odd} }^{43} \cos \left( \frac {k \pi}{45} \right) + \displaystyle \sum_{k \text{ even}}^{44} \cos \left( \frac {k \pi}{45} \right) - \displaystyle \sum_{\text{gcd}(k,45)\ne 1 }^{45} \cos \left( \frac {k \pi}{45} \right) \\ &=& - \displaystyle \sum_{\text{gcd}(k,45)\ne 1 }^{45} \cos \left( \frac {k \pi}{45} \right) \\ -W &=& \displaystyle \sum_{\text{gcd}(k,45)=3 }^{45} \cos \left( \frac {k \pi}{45} \right) + \displaystyle \sum_{\text{gcd}(k,45)=5 }^{45} \cos \left( \frac {k \pi}{45} \right) - \displaystyle \sum_{\text{gcd}(k,45)=15 }^{45} \cos \left( \frac {k \pi}{45} \right) \\ &=& \displaystyle \sum_{\text{gcd}(k,15)=1 }^{15} \cos \left( \frac {k \pi}{15} \right)+ \displaystyle \sum_{\text{gcd}(k,9)=1 }^{5} \cos \left( \frac {k \pi}{9} \right) - \displaystyle \sum_{\text{gcd}(k,3)=1 }^{3} \cos \left( \frac {k \pi}{3} \right) \\ &=& \displaystyle \sum_{\text{gcd}(k,15)=1 }^{15} \cos \left( \frac {k \pi}{15} \right)+ \displaystyle \sum_{\text{gcd}(k,9)=1 }^{5} \cos \left( \frac {k \pi}{9} \right) \\ &=& -\displaystyle \sum_{k \in S_1 } \cos \left( \frac {k \pi}{15} \right) - \displaystyle \sum_{k \in S_2} \cos \left( \frac {k \pi}{15} \right) \\ \end{aligned}

Where S = { 3 , 5 , 6 , 9 , 10 , 12 } , S 2 = { 3 , 6 } S = \{ 3,5,6,9,10,12 \}, S_2 = \{3,6 \} .

Apply cos ( A ) = cos ( π A ) \cos(A) = -\cos(\pi - A) and simplify everything, we get W = 0 W = \boxed 0 .

Wait... your formula assumes an arithmetic progression, but this isn't (we skip some terms)

Otto Bretscher - 6 years ago

Log in to reply

OKAY FIXED.

Pi Han Goh - 6 years ago

Looks good! (+1) I'll enjoy the Harvard Commencement festivities today.... will write more in the evening

Otto Bretscher - 6 years ago

Log in to reply

Post your proof please, I'm sure it will be mind blowing!

Pi Han Goh - 6 years ago

Challenge Master: Okay, I spotted my error and have amended them.

Pi Han Goh - 6 years ago
Otto Bretscher
May 28, 2015

I don't have a mind-blowing solution, as Pi Han hoped for... just a simple counting argument, using the principle of inclusion/exclusion.

For a divisor d d of 360 360 , we define S d = k = 1 360 / d cos ( k × d ) S_d=\sum_{k=1}^{360/d}\cos(k\times{d^\circ}) . Using roots of unity or symmetry, we see that S d = 0 S_d=0 for all d < 360 d<360 . Our sum is related to S 8 S_8 , but with the multiples of 2 4 24^\circ and 4 0 40^\circ omitted; thus we try S 8 S 24 S 40 S_8-S_{24}-S_{40} . But now we are subtracting too much; the common multiples of 2 4 24^\circ and 4 0 40^\circ are subtracted twice. Since l c m ( 24 , 40 ) = 120 lcm(24,40)=120 , we have to add S 120 S_{120} to correct for this overcount ("inclusion/exclusion").Thus our sum is S 8 S 24 S 40 + S 120 = 0 S_8-S_{24}-S_{40}+S_{120}=\boxed{0} .

One can write a very short solution in terms of primitive roots of unity and the Möbius Function μ ( n ) \mu(n) : Our sum is the sum of the primitive 45 45 -th roots of unity, which is μ ( 45 ) = 0 \mu(45)=0 since 45 45 fails to be square-free.

Moderator note:

The Mobius function approach is a nice way of thinking about this. It can be motivated because we want gcd ( 8 k , 360 ) = 8 gcd ( k , 45 ) = 1 \gcd( 8k', 360) = 8 \Leftrightarrow \gcd(k', 45 ) = 1 .

it could also be done by multiplying numerator and denominator by 2 sin θ 2\sin \theta and then continous product of 2 in both numerator and denominator

harish ghunawat - 6 years ago

Log in to reply

Show your solution please?

Pi Han Goh - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...