One more of those

Algebra Level 5

S = k = 1 252 ( 2020 8 k ) S=\sum_{k=1}^{252}{2020 \choose 8k} How many 0's does the number S S contain if written to base 2?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Oct 12, 2015

Let S n = k = 0 ( 2020 k n ) S_n=\sum_{k=0}^{\infty}{2020 \choose kn} . Since ( 2020 j ) = ( 2020 2020 j ) {2020 \choose j} = {2020 \choose 2020-j} , we have S 8 = k = 0 ( 2020 8 k + 4 ) S_8=\sum_{k=0}^{\infty} {2020 \choose 8k+4} , so that S 8 = S 4 2 . S_8=\frac{S_4}{2}.

Now we use a roots of unity filter , S 4 = 1 4 ( ( 1 + 1 ) 2020 + ( 1 + i ) 2020 + ( 1 1 ) 2020 + ( 1 i ) 2020 ) S_4=\frac{1}{4}\left((1+1)^{2020}+(1+i)^{2020}+(1-1)^{2020}+(1-i)^{2020}\right) = 1 4 ( 2 2020 + ( 2 i ) 1010 + ( 2 i ) 1010 ) = 1 4 ( 2 2020 2 1011 ) = 2 2018 2 1009 =\frac{1}{4}\left(2^{2020}+(2i)^{1010}+(-2i)^{1010}\right)=\frac{1}{4}(2^{2020}-2^{1011})=2^{2018}-2^{1009}

Finally S = S 8 1 = S 4 2 1 = 2 2017 2 1008 1 S=S_8-1=\frac{S_4}{2}-1=2^{2017}-2^{1008}-1 . Now 2 2017 1 2^{2017}-1 is all ones to base 2, and S S has just 1 \boxed{1} zero.

Moderator note:

Nice observation of the symmetry to obtain S 8 = S 4 2 S_8 = \frac{ S_4} { 2} , thereby simplifying your calculations slightly.

Still the master is better.

Chew-Seong Cheong - 5 years, 8 months ago

Log in to reply

The setter of the problem always has the "home court advantage." I posed the problem because I saw the shortcut. I would not have had the patience to do it the long (and systematic) way.

Otto Bretscher - 5 years, 8 months ago
Chew-Seong Cheong
Oct 12, 2015

Let f ( x ) = ( 1 + x ) 2020 f(x) = (1+x)^{2020} , then we have:

S = k = 1 2020 ( 2020 8 k ) = k = 0 2020 ( 2020 8 k ) 1 Let ω 8 = 1 , the eighth root of unity. = 1 8 ( f ( 1 ) + f ( 1 + ω ) + f ( 1 + ω 2 ) + f ( 1 + ω 3 ) + f ( 1 + ω 4 ) + f ( 1 + ω 5 ) + f ( 1 + ω 6 ) + f ( 1 + ω 7 ) ) 1 = 1 8 ( ( 1 + 1 ) 2020 + ( 1 + 1 2 + i 1 2 ) 2020 + ( 1 + i ) 2020 + ( 1 1 2 + i 1 2 ) 2020 + ( 1 1 ) 2020 + ( 1 1 2 i 1 2 ) 2020 + ( 1 i ) 2020 + ( 1 + 1 2 i 1 2 ) 2020 ) 1 = 1 8 ( 2 2020 + 2 505 ( 1 + 2 ) 2020 i 2 1010 2 505 ( 1 2 ) 2020 i + 0 + 2 505 ( 1 2 ) 2020 i 2 1010 2 505 ( 1 + 2 ) 2020 i ) 1 = 1 8 ( 2 2020 2 1011 ) 1 = 2 2017 2 1008 1 = ( 1 000...000 2017 zeroes ) 2 ( 1 000...000 1008 zeroes ) 2 ( 1 ) 2 = ( 111...111 2017 ones 000...000 1008 zeroes ) 2 ( 1 ) 2 = ( 111...111 2016 ones 0 111...111 1008 ones ) 2 S = \displaystyle \sum_{k=1}^{2020} \begin{pmatrix} 2020 \\ 8k \end{pmatrix} \\ \quad = \displaystyle \sum_{k=0}^{2020} \begin{pmatrix} 2020 \\ 8k \end{pmatrix} - 1 \quad \quad \small \color{#3D99F6}{\text{Let } \omega^8 = 1 \text{, the eighth root of unity.}} \\ \quad = \frac{1}{8} \left(f(1) + f(1+\omega) + f(1+\omega^2) + f(1+\omega^3) + f(1+\omega^4) \\ \quad \quad + f(1+\omega^5) + f(1+\omega^6) + f(1+\omega^7) \right) - 1 \\ \quad = \frac{1}{8} \left((1+1)^{2020} + \left(1+\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)^{2020} + (1+i)^{2020} + \left(1-\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)^{2020} + (1-1)^{2020} \\ \quad \quad + \left(1-\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right)^{2020} + (1-i)^{2020} + \left(1+\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right)^{2020} \right) - 1 \\ \quad = \frac{1}{8} \left(2^{2020} + 2^{505}(1+ \sqrt{2})^{2020}i - 2^{1010} - 2^{505}(1- \sqrt{2})^{2020}i + 0 \\ \quad \quad + 2^{505}(1- \sqrt{2})^{2020}i -2^{1010} - 2^{505}(1+ \sqrt{2})^{2020}i \right) - 1 \\ \quad = \frac{1}{8} \left(2^{2020} - 2^{1011} \right) - 1 \\ \quad = 2^{2017} - 2^{1008} - 1 \\ \quad = (1\underbrace{000...000}_{2017 \text{ zeroes}})_2 - (1\underbrace{000...000}_{1008 \text{ zeroes}})_2 - (1)_2 \\ \quad = (\underbrace{111...111}_{2017 \text{ ones}} \underbrace{000...000}_{1008 \text{ zeroes}})_2 - (1)_2 \\ \quad = (\underbrace{111...111}_{2016 \text{ ones}} \boxed{0} \underbrace{111...111}_{1008 \text{ ones}})_2

\Rightarrow There is only 1 \boxed{1} zero in S S in base-2.

Very systematic and detailed solution (upvote)! Thank you! Being a lazy guy, I reduced the problem from 8 to 4 first; see my solution.

Otto Bretscher - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...