One more sum (edited)

1 2 + 5 4 + 14 8 + 30 16 + \frac 12 + \frac 54 + \frac {14}8 + \frac {30}{16} + \cdots

The sum above can be expressed as p q \dfrac pq , where p p and q q are coprime positive integers. Find p + q p+q .

Hint: The numerators follow a pattern.

If you think that the above series diverges , then p q = 1 0 \dfrac pq = \dfrac 10 and type 1 as the answer.


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 20, 2020

S = 1 2 + 5 4 + 14 8 + 30 16 + = 1 2 2 + 1 2 + 2 2 2 2 + 1 2 + 2 2 + 3 2 2 3 + 1 2 + 2 2 + 3 2 + 4 2 2 4 + = 1 2 2 ( 1 + 1 2 + 1 2 2 + ) + 2 2 2 2 ( 1 + 1 2 + 1 2 2 + ) + 3 2 2 3 ( 1 + 1 2 + 1 2 2 + ) + = ( 1 2 2 + 2 2 2 2 + 3 2 2 3 + ) ( 1 1 1 2 ) = 2 n = 1 n 2 2 n = 2 n = 0 n 2 2 n = 2 n = 0 ( n + 1 ) 2 2 n + 1 \begin{aligned} S & = \frac 12 + \frac 54 + \frac {14}8 + \frac {30}{16} + \cdots \\ & = \frac {1^2}2 + \frac {1^2+2^2}{2^2} + \frac {1^2+2^2+3^2}{2^3} + \frac {1^2+2^2+3^2+4^2}{2^4} + \cdots \\ & = \small \frac {1^2}2 \left(1+\frac 12 + \frac 1{2^2} + \cdots\right) + \frac {2^2}{2^2} \left(1+\frac 12 + \frac 1{2^2} + \cdots\right) + \frac {3^2}{2^3} \left(1+\frac 12 + \frac 1{2^2} + \cdots\right) + \cdots \\ & = \left(\frac {1^2}2 + \frac {2^2}{2^2} + \frac {3^2}{2^3} + \cdots\right)\blue{\left(\frac 1{1-\frac 12} \right)} \\ & = \blue 2 \sum_{n=1}^\infty \frac {n^2}{2^n} = 2 \sum_{\red{n=0}}^\infty \frac {n^2}{2^n} = 2 \sum_{\red{n=0}}^\infty \frac {(n+1)^2}{2^{n+1}} \end{aligned}

= n = 0 n 2 + 2 n + 1 2 n = n = 0 n 2 2 n + 2 n = 0 n 2 n + n = 0 1 2 n Note that S = 2 n = 0 n 2 2 n = 1 2 S + 2 n = 0 n + 1 2 n + 1 + 1 1 1 2 Using the same method = 1 2 S + n = 0 n 2 n + n = 0 1 2 n + 2 = 1 2 S + 2 ( 2 ) + 2 = 12 \begin{aligned} \ \ & = \sum_{\red{n=0}}^\infty \frac {n^2+2n+1}{2^n} \\ & = \blue{\sum_{n=0}^\infty \frac {n^2}{2^n}} + 2 \red{\sum_{n=0}^\infty \frac n{2^n}} + \sum_{n=0}^\infty \frac 1{2^n} & \small \blue{\text{Note that }S = 2\sum_{n=0}^\infty \frac {n^2}{2^n}} \\ & = \blue{\frac 12 S} + 2 \red{\sum_{n=0}^\infty \frac {n+1}{2^{n+1}}} + \frac 1{1-\frac 12} & \small \red{\text{Using the same method}} \\ & = \frac 12 S + \sum_{n=0}^\infty \frac n{2^n} + \sum_{n=0}^\infty \frac 1{2^n} + 2 \\ & = \frac 12 S + 2(2) + 2 \\ & = 12 \end{aligned}

Therefore, p + q = 12 + 1 = 13 p+q = 12+1 = \boxed{13} .

Tattwa Shiwani
Mar 20, 2020

The infinite sum can be rewritten as follows:

S = n = 1 \displaystyle \sum_{n=1}^\infty k = 1 n k ² 2 n \frac {\sum_{k=1}^n k²}{2^n}

= n = 1 \displaystyle \sum_{n=1}^\infty n ( n + 1 ) ( 2 n + 1 ) 6 2 n \displaystyle\frac {\frac{ n(n+1)(2n+1)}{6}}{2^n}

= n = 1 \displaystyle \sum_{n=1}^\infty n ³ 3 + n ² 2 + n 6 2 n \displaystyle\frac {\frac{n³}{3} + \frac{n²}{2} + \frac{n}{6}}{2^n}

= n = 1 n ³ 2 n 3 \frac {\displaystyle \sum_{n=1}^\infty \frac {n³}{2^n}}{\displaystyle 3} + n = 1 n ² 2 n 2 \frac {\displaystyle \sum_{n=1}^\infty \frac {n²}{2^n}}{\displaystyle 2} + n = 1 n 2 n 6 \frac {\displaystyle \sum_{n=1}^\infty \frac {n}{2^n}}{\displaystyle 6}

= 26 3 + 6 2 + 2 6 \frac{26}{3} + \frac{6}{2} + \frac{2}{6}

= 12 1 \displaystyle\frac{12}{1}

Therefore p = 12 , q = 1 p = 12 , q = 1

p + q = 13 p + q = 13

Additional information:

Value of n = 1 n ³ 2 n \displaystyle \sum_{n=1}^\infty \frac {n³}{2^n}

Let K = n = 1 n ³ 2 n \displaystyle \sum_{n=1}^\infty \frac {n³}{2^n}

= n = 0 ( n + 1 ) ³ 2 n + 1 \displaystyle \sum_{n=0}^\infty \frac {(n+1)³}{2^{n+1}}

= n = 0 ( n ³ + 3 n ² + 3 n + 1 ) 2 n + 1 \displaystyle \sum_{n=0}^\infty \frac {(n³ + 3n² + 3n + 1)}{2^{n+1}}

= n = 0 n ³ 2 n 2 \displaystyle \frac {\sum_{n=0}^\infty \frac {n³}{2^n}}{\displaystyle 2} + 3 n = 0 n ² 2 n 2 \displaystyle \frac {\sum_{n=0}^\infty \frac {n²}{2^n}}{\displaystyle 2} + 3 n = 0 n 2 n 2 \displaystyle \frac {\sum_{n=0}^\infty \frac {n}{2^n}}{\displaystyle 2} + n = 0 1 2 n 2 \displaystyle \frac {\sum_{n=0}^\infty \frac {1}{2^n}}{\displaystyle 2}

= K 2 \frac{K}{2} + 3 n = 1 n ² 2 n 2 \displaystyle \frac {\sum_{n=1}^\infty \displaystyle\frac {n²}{2^n}}{\displaystyle 2} + 3 n = 1 n 2 n 2 \displaystyle \frac {\sum_{n=1}^\infty \displaystyle\frac {n}{2^n}}{\displaystyle 2} + n = 0 1 2 n 2 \displaystyle \frac {\sum_{n=0}^\infty \displaystyle\frac {1}{2^n}}{\displaystyle 2}

On subtracting K 2 \frac{K}{2} on both sides and multiplying the resultants by 2 we get

K = 3 n = 1 n ² 2 n \displaystyle \sum_{n=1}^\infty \frac {n²}{2^n} + 3 n = 1 n 2 n \displaystyle \sum_{n=1}^\infty \frac {n}{2^n} + n = 0 1 2 n \displaystyle \sum_{n=0}^\infty \frac {1}{2^n}

= 3 × 6 + 3 × 2 + 2 \ 3×6 + 3×2 + 2

= 26 = 26

Sorry for the errors in the previous version

Nice Problem...👍👍

SIMAR NARULA - 11 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...