A calculus problem by Jose Sacramento

Calculus Level 3

lim x 0 ln ( ( 2 e ) x + 1 e ) 1 e x 1 \lim_{x\to0} \dfrac{ \ln( (2e)^{x+1} - e ) - 1}{e^x - 1}

If the limit above can be expressed as ln ( a ) + b \ln(a) + b , where a a and b b are integers, find the sum a + b a+b .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L = lim x 0 ln ( ( 2 e ) x + 1 e ) 1 e x 1 A 0/0 cases, L’H o ˆ pital’s rule applies. = lim x 0 d d x ( ln ( ( 2 e ) x + 1 e ) 1 ) d d x ( e x 1 ) See note. = lim x 0 ln ( 2 e ) ( 2 e ) x + 1 ( 2 e ) x + 1 e e x = 2 ln ( 2 e ) = ln 4 + 2 \begin{aligned} L & = \lim_{x \to 0} \frac {\ln((2e)^{x+1}-e)-1}{e^x-1} & \small \color{#3D99F6} \text{A 0/0 cases, L'Hôpital's rule applies.} \\ & = \lim_{x \to 0} \frac {\color{#3D99F6}\frac d{dx} (\ln((2e)^{x+1}-e)-1)}{\frac d{dx} (e^x-1)} & \small \color{#3D99F6} \text{See note.} \\ & = \lim_{x \to 0} \frac {\color{#3D99F6}\frac {\ln(2e)(2e)^{x+1}} {(2e)^{x+1}-e}}{e^x} \\ & = 2 \ln (2e) \\ & = \ln 4 + 2 \end{aligned}

a + b = 4 + 2 = 6 \implies a+b = 4+2 = \boxed{6}


Note:

f ( x ) = d d x ( ln ( ( 2 e ) x + 1 e ) 1 ) Let u = ( 2 e ) x + 1 e = d d x ( ln u 1 ) = 1 u d u d x = 1 u d d x ( ( 2 e ) x + 1 e ) = ln ( 2 e ) ( 2 e ) x + 1 ( 2 e ) x + 1 e \small \begin{aligned} f'(x) & = \frac d{dx} (\ln {\color{#3D99F6}((2e)^{x+1}-e)}-1) & \color{#3D99F6} \text{Let }u = (2e)^{x+1}-e \\ & = \frac d{dx} (\ln {\color{#3D99F6}u}-1) \\ & = \frac 1u \cdot \frac {du}{dx} \\ & = \frac 1u \cdot \frac d{dx} \left((2e)^{x+1}-e\right) \\ & = \frac {\ln(2e)(2e)^{x+1}} {(2e)^{x+1}-e} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...