One Odd Octadecagon

Geometry Level 5

As shown above, the cyan polygon is surrounded by 10 unit regular heptagons. If the area of the cyan polygon can be expressed as

A sin π 7 + B sin 2 π 7 + C sin 3 π 7 A\sin\dfrac{\pi}{7} + B\sin\dfrac{2\pi}{7} + C\sin\dfrac{3\pi}{7}

where A A , B B , and C C are integers. Input the product A B C ABC as your answer.


The answer is 198.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 24, 2021

Consider a quarter of the cyan polygon. The angles between the sides and the horizontal are as shown. Split the area into a a to g g , then we have:

a = 1 2 ( cos π 14 + cos 5 π 14 + cos π 14 + cos 3 π 14 ) Note that sin θ = cos ( π 2 θ ) = 1 2 sin π 7 + 1 2 sin 2 π 7 + sin 3 π 7 b = sin π 14 ( cos 5 π 14 + cos π 14 + cos 3 π 14 ) = cos 6 π 14 cos 5 π 14 + sin π 14 cos π 14 + cos 6 π 14 cos 3 π 14 and cos A cos B = 1 2 ( cos ( A B ) + cos ( A + B ) ) = 1 2 ( cos π 14 + cos 11 π 14 ) + 1 2 sin π 7 + 1 2 ( cos 3 π 14 + cos 9 π 14 ) also sin ( 2 θ ) = 2 sin θ cos θ = 1 2 sin 3 π 7 1 2 sin 2 π 7 + 1 2 sin π 7 + 1 2 sin 2 π 7 1 2 sin π 7 = 1 2 sin 3 π 7 \begin{aligned} a & = \frac 12 \left(\cos \frac \pi{14} + \cos \frac {5\pi}{14} + \cos \frac \pi{14} + \cos \frac {3\pi}{14} \right) & \small \blue{\text{Note that }\sin \theta = \cos \left(\frac \pi 2 - \theta\right)} \\ & = \frac 12 \sin \frac \pi 7 + \frac 12 \sin \frac {2\pi}7 + \sin \frac {3\pi}7 \\ b & = \sin \frac \pi{14} \left(\cos \frac {5\pi}{14} + \cos \frac \pi{14} + \cos \frac {3\pi}{14} \right) \\ & = \blue{\cos \frac {6\pi}{14} \cos \frac {5\pi}{14}} + \red{\sin \frac \pi{14} \cos \frac \pi{14}} + \blue{\cos \frac {6\pi}{14} \cos \frac {3\pi}{14}} & \small \blue{\text{and }\cos A \cos B = \frac 12 (\cos (A-B) + \cos (A+B))} \\ & = \blue{\frac 12 \left(\cos \frac \pi{14} + \cos \frac {11\pi}{14} \right)} + \red{\frac 12 \sin \frac \pi 7} + \blue{\frac 12 \left(\cos \frac {3\pi}{14} + \cos \frac {9\pi}{14} \right)} & \small \red{\text{also }\sin (2\theta) = 2\sin \theta \cos \theta} \\ & = \frac 12 \sin \frac {3\pi}7 - \frac 12 \sin \frac {2\pi}7 + \frac 12 \sin \frac \pi 7 + \frac 12 \sin \frac {2\pi}7 - \frac 12 \sin \frac \pi 7 \\ & = \frac 12 \sin \frac {3\pi}7 \end{aligned}

c = ( sin 5 π 14 sin π 14 ) ( cos π 14 + cos 3 π 14 ) = ( cos 2 π 14 cos 6 π 14 ) ( cos π 14 + cos 3 π 14 ) = 1 2 ( cos π 14 + cos 3 π 14 + cos π 14 + cos 5 π 14 cos 5 π 14 cos 7 π 14 0 cos 3 π 14 cos 9 π 14 ) = 1 2 sin π 7 + sin 3 π 7 \begin{aligned} c & = \left(\sin \frac {5\pi}{14} - \sin \frac \pi{14} \right)\left(\cos \frac \pi{14} + \cos \frac {3\pi}{14}\right) \\ & = \left(\cos \frac {2\pi}{14} - \cos \frac {6\pi}{14} \right)\left(\cos \frac \pi{14} + \cos \frac {3\pi}{14}\right) \\ & = \frac 12 \left(\cos \frac \pi{14} + \cancel{\cos \frac {3\pi}{14}} + \cos \frac \pi{14} + \cancel{\cos \frac {5\pi}{14}} - \cancel{\cos \frac {5\pi}{14}} - \cancel{\cos \frac {7\pi}{14}}^0 - \cancel{\cos \frac {3\pi}{14}} - \cos \frac {9\pi}{14} \right) \\ & = \frac 12 \sin \frac \pi 7 + \sin \frac {3\pi}7 \end{aligned}

d = 1 2 sin 3 π 14 cos 3 π 14 = 1 4 sin 3 π 7 d = \dfrac 12 \sin \dfrac {3\pi}{14} \cos \dfrac {3\pi}{14} = \dfrac 14 \sin \dfrac {3\pi}7 , e = g = 1 4 sin π 7 e=g = \dfrac 14 \sin \dfrac \pi 7 , and f = 1 4 sin 5 π 7 = 1 4 sin ( π 5 π 7 ) = 1 4 sin 2 π 7 f = \dfrac 14 \sin \dfrac {5\pi}7 = \dfrac 14 \sin \left(\pi - \dfrac {5\pi}7 \right) = \dfrac 14 \sin \dfrac {2\pi}7 . Therefore the area of the polygon:

A p o l y g o n = 4 ( a + b + c + d + e + f + g ) = 4 ( ( 1 2 + 1 2 + 1 4 + 1 4 ) sin π 7 + ( 1 2 + 1 4 ) sin 2 π 7 + ( 1 + 1 2 + 1 + 1 4 ) sin 3 π 7 ) = 4 ( 3 2 sin π 7 + 3 4 sin 2 π 7 + 11 4 sin 3 π 7 ) = 6 sin π 7 + 3 sin 2 π 7 + 11 sin 3 π 7 \begin{aligned} A_{\rm polygon} & = 4(a+b+c+d+e+f+g) \\ & = 4\left(\left(\frac 12 + \frac 12 + \frac 14 + \frac 14 \right) \sin \frac \pi 7 + \left(\frac 12 + \frac 14 \right) \sin \frac {2\pi} 7 + \left(1 + \frac 12 + 1 + \frac 14 \right) \sin \frac {3\pi} 7 \right) \\ & = 4\left(\frac 32 \sin \frac \pi 7 + \frac 34 \sin \frac {2\pi} 7 + \frac {11}4 \sin \frac {3\pi} 7 \right) \\ & = 6\sin \frac \pi 7 + 3\sin \frac {2\pi} 7 + 11 \sin \frac {3\pi} 7 \end{aligned}

Therefore A B C = 6 × 3 × 11 = 198 ABC = 6 \times 3 \times 11 = \boxed{198} .

David Vreken
Jan 25, 2021

The cyan polygon can be tiled with 6 6 purple unit rhombi (with interior angles of π 7 \cfrac{\pi}{7} and 6 π 7 \cfrac{6\pi}{7} ), 3 3 green unit rhombi (with interior angles of 2 π 7 \cfrac{2\pi}{7} and 5 π 7 \cfrac{5\pi}{7} ), and 11 11 blue unit rhombi (with interior angles of 3 π 7 \cfrac{3\pi}{7} and 4 π 7 \cfrac{4\pi}{7} ), as follows:

Since each purple unit rhombi has an area of 2 1 2 1 1 sin π 7 = sin π 7 2 \cdot \frac{1}{2} \cdot 1 \cdot 1 \cdot \sin \cfrac{\pi}{7} = \sin \cfrac{\pi}{7} , each green unit rhombi has an area of 2 1 2 1 1 sin 2 π 7 = sin 2 π 7 2 \cdot \frac{1}{2} \cdot 1 \cdot 1 \cdot \sin \cfrac{2\pi}{7} = \sin \cfrac{2\pi}{7} , and each blue unit rhombi has an area of 2 1 2 1 1 sin 3 π 7 = sin 3 π 7 2 \cdot \frac{1}{2} \cdot 1 \cdot 1 \cdot \sin \cfrac{3\pi}{7} = \sin \cfrac{3\pi}{7} , the total area is:

6 sin π 7 + 3 sin 2 π 7 + 11 sin 3 π 7 6 \sin \cfrac{\pi}{7} + 3 \sin \cfrac{2\pi}{7} + 11 \sin \cfrac{3\pi}{7} .

Therefore, A = 6 A = 6 , B = 3 B = 3 , C = 11 C = 11 , and A B C = 198 ABC = \boxed{198} .

Wow! Neatest solution so far! Nice!

Michael Huang - 4 months, 2 weeks ago

Log in to reply

Scintillating question, Michael!!!!!

Pi Han Goh - 4 months, 2 weeks ago

I was pretty pleased when I found this tiling solution! Great question!

David Vreken - 4 months, 2 weeks ago

Simply brilliant! You left me speechless @David Vreken ! This is a proof that math is indeed beautiful!

Veselin Dimov - 4 months, 2 weeks ago

Log in to reply

Thanks, I'm glad you enjoyed it!

David Vreken - 4 months, 2 weeks ago
Veselin Dimov
Jan 25, 2021

Note that we can cut the shape into smaller regions area as shown below where congruent shapes are colored alike. Also note that the internal angle of a regular heptagon is θ = 5 π 7 \theta=\frac{5\pi}{7} , which can be easily derived if we draw segments from the center of the heptagon to each vertex and find the angles of one of the resulting seven congruent isosceles triangles. The identities sin ( π x ) = sin ( x ) \textcolor{#3D99F6}{\text{sin}(\pi-x)=\text{sin}(x)} , sin x . sin y = cos ( x y ) cos ( x + y ) 2 \textcolor{#20A900}{\text{sin}x.\text{sin}y=\frac{\text{cos}(x-y)-\text{cos}(x+y)}{2}} , cos x . cos y = cos ( x y ) + cos x + y 2 \textcolor{#20A900}{\text{cos}x.\text{cos}y=\frac{\text{cos}(x-y)+\text{cos}{x+y}}{2}} and sin x . cos y = sin ( x y ) + sin ( x + y ) 2 \textcolor{#20A900}{\text{sin}x.\text{cos}y=\frac{\text{sin}(x-y)+\text{sin}(x+y)}{2}} will be used a lot in the course of our work so whenever the first one is used, it will be colored in blue, and whenever one of the other three is used, it will be colored in green. Sometimes the green formulae will be used for x = y x=y and will be equivalent to 2 sin x cos x = sin 2 x \textcolor{#20A900}{2\text{sin}x\text{cos}x=\text{sin}2x} , 2 sin 2 x = 1 cos 2 x \textcolor{#20A900}{2\text{sin}^2x=1-\text{cos}2x} and 2 cos 2 x = cos 2 x + 1 \textcolor{#20A900}{2\text{cos}^2x=\text{cos}2x+1} .

We'll address each of the four shapes individually. 1. 1. Cyan Triangle ( B E Q ) (\triangle BEQ) .

It is an isosceles triangle with equal side-lengths of 1 1 and E = 2 π 2 θ = 4 π 7 \angle E=2\pi-2\theta=\frac{4\pi}{7} . Also B = Q = 3 π 14 \angle B=\angle Q = \frac{3\pi}{14} . Its area is: S cyan = B E . E Q . sin B E Q 2 = sin 4 π 7 2 = sin 3 π 7 2 S_{\textcolor{cyan}{\text{cyan}}}=\frac{BE.EQ.\text{sin}\angle BEQ}{2}=\frac{\textcolor{#3D99F6}{\text{sin}\frac{4\pi}{7}}}{2}= \frac{\text{sin}\frac{3\pi}{7}}{2} Drawing the height from E \angle E we get two congruent right triangles with which it's easily found that B Q = 2 sin 2 π 7 = Q P BQ=2\text{sin}\frac{2\pi}{7}=QP since these two segments are bases of the congruent triangles. 2. 2. Yellow Trapezoid ( A B C D ) (ABCD) .

It is an isosceles trapezoid. Draw the heights from C C and D D to the base and label the intersection points with C 1 C_1 and D 1 D_1 . The two heights split the trapezoid to two congruent right triangles and a rectangle. C = 2 π 2 θ = 4 π 7 B = 3 π 7 \angle C=2\pi-2\theta=\frac{4\pi}{7}\Rightarrow \angle B=\frac{3\pi}{7} . Then: A D 1 = B C 1 = cos 3 π 7 ; C C 1 = h = sin 3 π 7 ; A B = A D 1 + D 1 C 1 + C 1 B = 2 cos 3 π 7 + 1 AD_1=BC_1=\text{cos}\frac{3\pi}{7}; CC_1=h=\text{sin}\frac{3\pi}{7}; AB=AD_1+D_1C_1+C_1B=2\text{cos}\frac{3\pi}{7}+1 S yellow = ( A B + C D ) h 2 = sin 3 π 7 cos 3 π 7 + sin 3 π 7 = sin 6 π 7 2 + sin 3 π 7 = sin π 7 2 + sin 3 π 7 S_{\textcolor{#CEBB00}{\text{yellow}}}=\frac{(AB+CD)h}{2}={\textcolor{#20A900}{\text{sin}\frac{3\pi}{7}\text{cos}\frac{3\pi}{7}}+\text{sin}\frac{3\pi}{7}=\frac{\textcolor{#3D99F6}{\text{sin}\frac{6\pi}{7}}}{2}+\text{sin}\frac{3\pi}{7}=\frac{\text{sin}\frac{\pi}{7}}{2}+\text{sin}\frac{3\pi}{7}} 3. 3. Red Trapezoid ( M Q B A ) (MQBA) .

It is again an isosceles trapezoid but its legs are A M = B Q = 2 sin 2 π 7 AM=BQ=2\text{sin}\frac{2\pi}{7} (which we know from above). Again, draw the heights A A 1 AA_1 and B B 1 BB_1 and split the trapezoid to a rectangle and and two congruent right triangles. First: Q B A = 2 π ( A B C + θ + Q B E ) = 9 π 14 M Q B = 5 π 14 \angle QBA=2\pi-(\angle ABC+\theta+\angle QBE)=\frac{9\pi}{14} \Rightarrow \angle MQB=\frac{5\pi}{14} Now from B B 1 Q A A 1 M \triangle BB_1Q\cong\triangle AA_1M we have: M A 1 = Q B 1 = B Q cos 5 π 14 = 2 sin 2 π 7 cos 5 π 14 cos ( π 2 x ) = sin x MA_1=QB_1=BQ\text{cos}\frac{5\pi}{14}=2\text{sin}\frac{2\pi}{7}\textcolor{#EC7300}{\text{cos}\frac{5\pi}{14}}\ \ \ \ \ \textcolor{#EC7300}{\text{cos}\left(\frac{\pi}{2}-x\right)=\text{sin}x} M A 1 = Q B 1 = 2 sin 2 π 7 sin π 7 MA_1=QB_1=2\text{sin}\frac{2\pi}{7}\text{sin}\frac{\pi}{7} B B 1 = h 1 = B Q sin 5 π 14 = 2 sin 2 π 7 sin 5 π 14 sin ( π 2 x ) = cos x BB_1=h_1=BQ\text{sin}\frac{5\pi}{14}=2\text{sin}\frac{2\pi}{7}\textcolor{#EC7300}{\text{sin}\frac{5\pi}{14}}\ \ \ \ \ \textcolor{#EC7300}{\text{sin}\left(\frac{\pi}{2}-x\right)=\text{cos}x} B B 1 = h 1 = 2 sin 2 π 7 cos π 7 BB_1=h_1=2\text{sin}\frac{2\pi}{7}\text{cos}\frac{\pi}{7} M Q = M A 1 + A 1 B 1 + B 1 Q = 2 M A 1 + A B = 4 sin 2 π 7 sin π 7 + 2 cos 3 π 7 + 1 MQ=MA_1+A_1B_1+B_1Q=2MA_1+AB=4\text{sin}\frac{2\pi}{7}\text{sin}\frac{\pi}{7}+2\text{cos}\frac{3\pi}{7}+1 Using the formula for trapezoid's area: S red = ( M Q + A B ) h 1 2 = ( 4 sin 2 π 7 sin π 7 + 4 cos 3 π 7 + 2 ) sin 2 π 7 cos π 7 S_{\textcolor{#D61F06}{\text{red}}}=\frac{(MQ+AB)h_1}{2}=\left(4\text{sin}\frac{2\pi}{7}\text{sin}\frac{\pi}{7}+4\text{cos}\frac{3\pi}{7}+2\right)\text{sin}\frac{2\pi}{7}\text{cos}\frac{\pi}{7} S red = 2 sin 2 2 π 7 . 2 sin π 7 cos π 7 + 2 sin 2 π 7 ( 2 cos π 7 cos 3 π 7 ) + 2 sin 2 π 7 cos π 7 S_{\textcolor{#D61F06}{\text{red}}}=2\textcolor{#20A900}{\text{sin}^2\frac{2\pi}{7}}.2\textcolor{#20A900}{\text{sin}\frac{\pi}{7}\text{cos}\frac{\pi}{7}}+2\text{sin}\frac{2\pi}{7}\left(2\textcolor{#20A900}{\text{cos}\frac{\pi}{7}\text{cos}\frac{3\pi}{7}}\right)+2\textcolor{#20A900}{\text{sin}\frac{2\pi}{7}\text{cos}\frac{\pi}{7}} S red = ( 1 cos 4 π 7 ) sin 2 π 7 + 2 sin 2 π 7 cos 2 π 7 + 2 sin 2 π 7 cos 4 π 7 + sin π 7 + sin 3 π 7 S_{\textcolor{#D61F06}{\text{red}}}=\left(1-\text{cos}\frac{4\pi}{7}\right)\text{sin}\frac{2\pi}{7}+2\textcolor{#20A900}{\text{sin}\frac{2\pi}{7}\text{cos}\frac{2\pi}{7}}+2\textcolor{#20A900}{\text{sin}\frac{2\pi}{7}\text{cos}\frac{4\pi}{7}}+\text{sin}\frac{\pi}{7}+\text{sin}\frac{3\pi}{7} S red = sin 2 π 7 sin 2 π 7 cos 4 π 7 + sin 4 π 7 + sin 2 π 7 + sin 6 π 7 + sin π 7 + sin 3 π 7 S_{\textcolor{#D61F06}{\text{red}}}=\text{sin}\frac{2\pi}{7}-\textcolor{#20A900}{\text{sin}\frac{2\pi}{7}\text{cos}\frac{4\pi}{7}}+\textcolor{#3D99F6}{\text{sin}\frac{4\pi}{7}}+\text{sin}\frac{-2\pi}{7}+\textcolor{#3D99F6}{\text{sin}\frac{6\pi}{7}}+\text{sin}\frac{\pi}{7}+\text{sin}\frac{3\pi}{7} S red = sin 2 π 7 1 2 sin 2 π 7 1 2 sin 6 π 7 + sin 3 π 7 sin 2 π 7 + sin π 7 + sin π 7 + sin 3 π 7 S_{\textcolor{#D61F06}{\text{red}}}=\text{sin}\frac{2\pi}{7}-\frac{1}{2}\text{sin}\frac{-2\pi}{7}-\frac{1}{2}\textcolor{#3D99F6}{\text{sin}\frac{6\pi}{7}}+\text{sin}\frac{3\pi}{7}-\text{sin}\frac{2\pi}{7}+\text{sin}\frac{\pi}{7}+\text{sin}\frac{\pi}{7}+\text{sin}\frac{3\pi}{7} S red = sin 2 π 7 + 1 2 sin 2 π 7 1 2 sin π 7 + sin 3 π 7 sin 2 π 7 + sin π 7 + sin π 7 + sin 3 π 7 S_{\textcolor{#D61F06}{\text{red}}}=\text{sin}\frac{2\pi}{7}+\frac{1}{2}\text{sin}\frac{2\pi}{7}-\frac{1}{2}\text{sin}\frac{\pi}{7}+\text{sin}\frac{3\pi}{7}-\text{sin}\frac{2\pi}{7}+\text{sin}\frac{\pi}{7}+\text{sin}\frac{\pi}{7}+\text{sin}\frac{3\pi}{7} Collecting like terms results in: S red = 3 2 sin π 7 + 1 2 sin 2 π 7 + 2 sin 3 π 7 S_{\textcolor{#D61F06}{\text{red}}}=\frac{3}{2}\text{sin}\frac{\pi}{7}+\frac{1}{2}\text{sin}\frac{2\pi}{7}+2\text{sin}\frac{3\pi}{7} 4. 4. Green Rectangle ( M N P Q ) (MNPQ) .

From above we have the side-lengths of the rectangle so evaluating its area is just a matter of calculations: S green = P Q . Q M = B Q . Q M = 2 sin 2 π 7 ( 4 sin 2 π 7 sin π 7 + 2 cos 3 π 7 + 1 ) S_{\textcolor{#20A900}{\text{green}}}=PQ.QM=BQ.QM=2\text{sin}\frac{2\pi}{7}\left(4\text{sin}\frac{2\pi}{7}\text{sin}\frac{\pi}{7}+2\text{cos}\frac{3\pi}{7}+1\right) S green = 8 sin 2 2 π 7 sin π 7 + 4 sin 2 π 7 cos 3 π 7 + 2 sin 2 π 7 S_{\textcolor{#20A900}{\text{green}}}=8\textcolor{#20A900}{\text{sin}^2\frac{2\pi}{7}}\text{sin}\frac{\pi}{7}+4\textcolor{#20A900}{\text{sin}\frac{2\pi}{7}\text{cos}\frac{3\pi}{7}}+2\text{sin}\frac{2\pi}{7} S green = 4 sin π 7 ( 1 cos 4 π 7 ) + 2 sin π 7 + 2 sin 5 π 7 + 2 sin 2 π 7 S_{\textcolor{#20A900}{\text{green}}}=4\text{sin}\frac{\pi}{7}\left(1-\text{cos}\frac{4\pi}{7}\right)+2\text{sin}\frac{-\pi}{7}+2\textcolor{#3D99F6}{\text{sin}\frac{5\pi}{7}}+2\text{sin}\frac{2\pi}{7} S green = 4 sin π 7 4 sin π 7 cos 4 π 7 2 sin π 7 + 2 sin 2 π 7 + 2 sin 2 π 7 S_{\textcolor{#20A900}{\text{green}}}=4\text{sin}\frac{\pi}{7}-4\textcolor{#20A900}{\text{sin}\frac{\pi}{7}\text{cos}\frac{4\pi}{7}}-2\text{sin}\frac{\pi}{7}+2\text{sin}\frac{2\pi}{7}+2\text{sin}\frac{2\pi}{7} S green = 2 sin π 7 2 sin 3 π 7 2 sin 5 π 7 + 4 sin 2 π 7 S_{\textcolor{#20A900}{\text{green}}}=2\text{sin}\frac{\pi}{7}-2\text{sin}\frac{-3\pi}{7}-2\textcolor{#3D99F6}{\text{sin}\frac{5\pi}{7}}+4\text{sin}\frac{2\pi}{7} S green = 2 sin π 7 + 2 sin 3 π 7 2 sin 2 π 7 + 4 sin 2 π 7 S_{\textcolor{#20A900}{\text{green}}}=2\text{sin}\frac{\pi}{7}+2\text{sin}\frac{3\pi}{7}-2\text{sin}\frac{2\pi}{7}+4\text{sin}\frac{2\pi}{7} S green = 2 sin π 7 + 2 sin 2 π 7 + 2 sin 3 π 7 S_{\textcolor{#20A900}{\text{green}}}=2\text{sin}\frac{\pi}{7}+2\text{sin}\frac{2\pi}{7}+2\text{sin}\frac{3\pi}{7} Finally we have to evaluate the area of the original octadecagon S S : S = 6 S cyan + 2 S yellow + 2 S red + S green S=6S_{\textcolor{cyan}{\text{cyan}}}+2S_{\textcolor{#CEBB00}{\text{yellow}}}+2S_{\textcolor{#D61F06}{\text{red}}}+S_{\textcolor{#20A900}{\text{green}}} Substituting and simplifying gives: S = 6 sin π 7 + 3 sin 2 π 7 + 11 sin 3 π 7 S=6\text{sin}\frac{\pi}{7}+3\text{sin}\frac{2\pi}{7}+11\text{sin}\frac{3\pi}{7} Therefore the answer is 6 3 11 = 198 6*3*11=\fbox{198} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...