one of NTSE's best # 1

Algebra Level 3

x = 1 1 + 1 2 + 1 4 + 2 1 + 2 2 + 2 4 + 3 1 + 3 2 + 3 4 + 99 1 + 9 9 2 + 9 9 4 x = \frac 1{1+1^2+1^4} + \frac 2{1+2^2+2^4} + \frac 3{1+3^2+3^4} + \cdots \frac {99}{1+99^2+99^4}

What values does x x lie in between?

0.48 < x < 0.49 0.48<x<0.49 0.47 < x < 0.48 0.47<x<0.48 0.49 < x < 0.50 0.49< x <0.50 0.46 < x < 0.47 0.46<x<0.47

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 11, 2018

x = k = 1 n k 1 + k 2 + k 4 where n = 99 = k = 1 n k ( k 2 k + 1 ) ( k 2 + k + 1 ) Note that k 4 + k 2 + 1 = ( k 2 k + 1 ) ( k 2 + k + 1 ) = 1 2 k = 1 n ( 1 k 2 k + 1 1 k 2 + k + 1 ) Note that k 2 + k + 1 = ( k + 1 ) 2 ( k + 1 ) + 1 = 1 2 ( k = 1 n 1 k 2 k + 1 k = 1 n 1 ( k + 1 ) 2 ( k + 1 ) + 1 ) Let j = k + 1 = 1 2 ( k = 1 n 1 k 2 k + 1 j = 2 n + 1 1 j 2 j + 1 ) Replace j with k = 1 2 ( k = 1 n 1 k 2 k + 1 k = 2 n + 1 1 k 2 k + 1 ) = 1 2 ( 1 1 2 1 + 1 1 ( n + 1 ) 2 ( n + 1 ) + 1 ) Putting back n = 99 = 1 2 ( 1 1 10 0 2 100 + 1 ) \begin{aligned} x & = \sum_{k=1}^{\color{#D61F06}n} \frac k{\color{#3D99F6}1+k^2+k^4} & \small \color{#D61F06} \text{where }n = 99 \\ & = \sum_{k=1}^n \frac k{\color{#3D99F6}(k^2-k+1)(k^2+k+1)} & \small \color{#3D99F6} \text{Note that }k^4+k^2+1 = (k^2-k+1)(k^2+k+1) \\ & = \frac 12 \sum_{k=1}^n \left(\frac 1{k^2-k+1} - \frac 1{\color{#3D99F6}k^2+k+1}\right) & \small \color{#3D99F6} \text{Note that }k^2+k+1 = (k+1)^2-(k+1)+1 \\ & = \frac 12 \left( \sum_{k=1}^n \frac 1{k^2-k+1} - \sum_{\color{#3D99F6}k=1}^{\color{#3D99F6}n} \frac 1{\color{#3D99F6}(k+1)^2-(k+1)+1} \right) & \small \color{#3D99F6} \text{Let }j = k+1 \\ & = \frac 12 \left( \sum_{k=1}^n \frac 1{k^2-k+1} - \sum_{\color{#3D99F6}j=2}^{\color{#3D99F6}n+1} \frac 1{\color{#3D99F6}j^2-j+1} \right) & \small \color{#3D99F6} \text{Replace }j \text{ with }k \\ & = \frac 12 \left( \sum_{k=1}^n \frac 1{k^2-k+1} - \sum_{\color{#3D99F6}k=2}^{\color{#3D99F6}n+1} \frac 1{\color{#3D99F6}k^2-k+1} \right) \\ & = \frac 12 \left(\frac 1{1^2-1+1} - \frac 1{(n+1)^2-(n+1)+1} \right) & \small \color{#3D99F6} \text{Putting back }n=99 \\ & = \frac 12 \left(1 - \frac 1{100^2-100+1} \right) \end{aligned}

Therefore, 1 2 1 100 < x < 1 2 0.49 < x < 0.50 \frac 12 - \frac 1{100}< x < \frac 12 \implies \boxed{0.49 < x < 0.50}

I liked the coloring of this solution. Nice sir.

Vilakshan Gupta - 3 years, 3 months ago

Log in to reply

Thanks. Glad that you like it. No upvote?

Chew-Seong Cheong - 3 years, 3 months ago

Log in to reply

Upvoted ! Initially i didn't remember to upvote it.

Vilakshan Gupta - 3 years, 3 months ago

Sir, in the fourth last step, could you explain the red coloured where you changed the bounds from k=2 to n+1 .

Aman thegreat - 3 years, 3 months ago

Log in to reply

I have added a line to explained.

Chew-Seong Cheong - 3 years, 3 months ago
Suresh Jh
Feb 10, 2018

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...