One step answer

Geometry Level 2

tan 4 0 + 2 tan 1 0 = ? \large{\tan40^{\circ}+2\tan10^{\circ}} = \ ?

cot 4 0 \cot40^{\circ} None of these choices cot 6 0 \cot60^{\circ} cot 5 0 \cot50^{\circ} cot 1 0 \cot10^{\circ}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tanishq Varshney
Apr 30, 2015

tan 4 0 + 2 cot 8 0 \tan 40^{\circ}+2\cot 80^{\circ}

2 cot 2 θ = cot θ tan θ 2\cot 2 \theta=\cot \theta-\tan \theta

= cot 4 0 \cot 40^{\circ}

Moderator note:

Short and sweet! Great job.

How did you get 2 cot 2 θ = cot θ tan θ 2\cot{2\theta}=\cot{\theta}-\tan{\theta} ?

Thomas James Bautista - 6 years, 1 month ago

Log in to reply

ok u want me to prove this

2 t a n 2 θ \frac{2}{tan2 \theta}

t a n 2 θ = 2 t a n θ 1 t a n 2 θ tan 2\theta=\frac{2tan\theta}{1-tan^{2} \theta}

putting the value of t a n 2 θ tan 2\theta

we get 1 t a n 2 θ t a n θ \frac{1-tan^{2} \theta}{tan \theta}

1 t a n θ t a n θ \frac{1}{tan \theta}-tan \theta

c o t θ t a n θ cot \theta-tan \theta

hope it helps @Thomas James Bautista

Tanishq Varshney - 6 years, 1 month ago

Log in to reply

Thanks for that! After I commented, I tried proving it myself in a different way, but your proof works as well. I wasn't aware of this identity before, so I was quick to comment.

Thomas James Bautista - 6 years, 1 month ago

Another approach!! tan 4 0 + 2 tan 1 0 = tan 4 0 + 2 tan 8 0 = tan 4 0 + 2 1 ( tan 4 0 ) 2 2 tan 4 0 = 1 tan 4 0 = cot 4 0 o \tan40^{\circ}+2\tan10^{\circ} =\tan40^{\circ}+\dfrac{2}{\tan80^{\circ}} \\=\tan40^{\circ}+2*\dfrac{1-(\tan40^{\circ})^2}{2*\tan40^{\circ}} =\dfrac{1}{\tan40^{\circ}}\\=\cot40^o

Moderator note:

I like how double angle identities sneaks up in here. Good job!

Appan Rakaraddi
May 1, 2015

Tan40 + tan10 = tan50(1-tan10tan40)

Tan40+ tan10+tan10=tan50(1-tan10tan40)+tan10

=tan50

=cot40

Moderator note:

Right, the conventional compound angle formula works too. Note that for clarity, at the second line, you have tan ( 5 0 ) + tan ( 1 0 ) ( 1 tan ( 5 0 ) tan ( 4 0 ) ) \tan(50^\circ) + \tan(10^\circ) \left ( 1 - \tan(50^\circ) \tan(40^\circ) \right ) with the bracket equals to 0 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...