Just Divide and Conquer.

Calculus Level 5

lim n k = 1 n λ k 4 + 2 k 3 + k 2 + k + 1 3 n 5 + n 2 + n + 5 k = 1 3 \large\ \lim _{ n\rightarrow \infty }{ \sum _{ k=1 }^{ n }{ \frac { \lambda { k }^{ 4 } + 2{ k }^{ 3 } + { k }^{ 2 } + k + 1 }{ { 3n }^{ 5 } + { n }^{ 2 } + n + 5k } } } = \frac { 1 }{ 3 }

Find λ \lambda if the equation above holds true.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 21, 2017

Relevant wiki: Sum of n, n², or n³

Let S n = k = 1 n λ k 4 + 2 k 3 + k 2 + k + 1 3 n 5 + n 2 + n + 5 k \displaystyle S_n = \sum_{k=1}^n \frac {\lambda k^4+2k^3+k^2+k+1}{3n^5+n^2+n+5k} .

As n n \to \infty ,

S n k = 1 n λ k 4 3 n 5 = λ n ( n + 1 ) ( 2 n + 1 ) ( 3 n 2 + 3 n 1 ) 30 × 3 n 5 6 λ n 5 90 n 5 = λ 15 = 1 3 λ = 5 \begin{aligned} S_{n \to \infty} & \to \frac {\sum_{k=1}^n \lambda k^4}{3n^5} = \frac {\lambda n(n+1)(2n+1)(3n^2+3n-1)}{30\times 3n^5} \to \frac {6\lambda n^5}{90n^5} = \frac \lambda {15} = \frac 13 \\ \implies \lambda & = \boxed{5} \end{aligned}

Leonardo Lessa
Nov 20, 2017

Let x k = k / n x_k = k/n . Then, dividing the numerator and the denominator by n 4 n^4 , we have lim n k = 1 n 1 n λ x k 4 + 2 x k 3 n 1 + x k 2 n 2 + x k n 3 + n 4 3 + n 2 + n 3 + 5 x k n 3 = lim n k = 1 n 1 n λ x k 4 3 \lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n} \frac{\lambda x_k^4 + 2x_k^3 n^{-1} + x_k^2 n^{-2} + x_k n^{-3} + n^{-4}}{3 + n^{-2} + n^{-3} + 5 x_k n^{-3}} = \lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n} \frac{\lambda x_k^4}{3}

In the last equality, we observed that each term of the numerator that had a negative power of n n was zero when taken the limit.

The last expression is the Riemman sum of the function f ( x ) = λ x 4 / 3 f(x) = \lambda x^4 / 3 , which converges to the integral from 0 0 to 1 1 of the function f f . Thus, 0 1 λ x 4 3 d x = 1 3 , λ x 5 5 0 1 = 1 λ = 5. \begin{aligned} \int_0^1 \frac{\lambda x^4}{3} dx & = \frac{1}{3}, \\ \frac{\lambda x^5}{5} \Big|_0^1 & = 1 \\ \lambda & = 5. \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...