One Step Harder

Algebra Level 5

Let p ( x ) p(x) be a monic quartic polynomial such that p ( 1 ) = 6 p(1) = 6 , p ( 2 ) = 3 p(-2) = 3 , p ( 3 ) = 2 p(3) = -2 and p ( 4 ) = 9 p(-4) = -9 . Find p ( 4 ) + 4 |p(4) + 4| .

This problem is a part of this set .


The answer is 139.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I kinda see that p ( x ) = 7 x 2 p(x) = 7-x^{2} for x = 1 , 2 , 3 , 4 x = 1,-2,3,-4 . Every time x |x| increases by 1 1 , p ( x ) p(x) decreases by 3 , 5 , 7 3,5,7 . That is some sight of quadratic sequence with no terms of x x .

Which means p ( x ) 7 + x 2 = 0 p(x) - 7 + x^{2} = 0 has roots x = 1 , 2 , 3 , 4 x = 1,-2,3,-4 .

Therefore, p ( x ) 7 + x 2 = c ( x 1 ) ( x + 2 ) ( x 3 ) ( x + 4 ) p(x)-7+x^{2} = c(x-1)(x+2)(x-3)(x+4) for some constant c c .

And p ( x ) p(x) is also monic, that means c = 1 c = 1 .

p ( x ) = ( x 1 ) ( x + 2 ) ( x 3 ) ( x + 4 ) x 2 + 7 p(x) = (x-1)(x+2)(x-3)(x+4) - x^2 + 7

Plug in x = 4 x = 4 we get p ( 4 ) = 3 × 6 × 1 × 8 4 2 + 7 = 135 p(4) = 3\times 6\times 1 \times 8 - 4^{2} + 7 = \boxed{135} ~~~


Just plus 4 to 135 if you say that the answer is not 135. =_="

Chew-Seong Cheong
Nov 19, 2014

Let p ( x ) = x 4 + a x 3 + b x 2 + c x + d p(x) = x^4+ax^3+bx^2+cx+d , then:

p ( 1 ) = 1 + a + b + c + d = 6 p ( 2 ) = 16 8 a + 4 b 2 c + d = 3 p ( 3 ) = 81 + 27 a + 9 b + 3 c + d = 2 p ( 4 ) = 256 64 a + 16 b 4 c + d = 9 \begin{aligned} &p(1) &=&1+a+b+c+d &=&6 \\ &p(-2) &=&16-8a+4b-2c+d&=&3 \\ &p(3) &= &81+ 27a +9b +3c +d&=&-2 \\ &p(-4) &= &256-64a +16b -4c +d&= &-9 \end{aligned}

This implies that: [ 1 1 1 1 8 4 2 1 81 27 3 1 256 64 4 1 ] [ a b c d ] = [ 5 13 83 265 ] \begin{bmatrix} 1&1&1&1 \\ -8&4&-2&1 \\ 81&27&3&1 \\ 256&-64&-4&1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}=\begin{bmatrix} 5 \\ -13 \\ -83 \\ -265 \end{bmatrix}

Solve the matrix equation above to get the coefficient a a , b b , c c and d d . You may find the inverse matrix to solve or use Gaussian elimination method as follows.

[ 64 16 4 1 265 27 9 3 1 83 8 4 2 1 13 1 1 1 1 5 ] \left[ \begin{matrix} -64 & 16 & -4 & 1 & | & -265 \\ 27 & 9 & 3 & 1 & | & -83 \\ -8 & 4 & -2 & 1 & | & -13 \\ 1 & 1 & 1 & 1 & | & 5 \end{matrix} \right]

R 1 R 1 R 2 27 R 4 R 2 R 1 8 R 3 R 3 ( 8 R 3 + R 3 ) / 3 R 4 [ 64 16 4 1 265 0 18 24 26 218 0 16 12 7 161 0 4 2 3 9 ] \Rightarrow \begin{matrix} R_1 &\rightarrow R_1 \\ R_2-27R_4 &\rightarrow R_2 \\ R_1-8R_3 &\rightarrow R_3 \\ (8R_3+R_3)/3 &\rightarrow R_4 \end{matrix} \Rightarrow \left[ \begin{matrix} -64 & 16 & -4 & 1 & | & -265 \\ 0 & -18 & -24 & -26 & | & -218 \\ 0 & -16 & 12 & -7 & | & -161 \\ 0 & 4 & 2 & 3 & | & 9 \end{matrix} \right]

R 1 R 1 R 2 / 2 R 2 R 3 + 48 R 4 R 3 2 R 2 + 9 R 4 R 4 [ 64 16 4 1 265 0 9 12 13 109 0 0 20 5 125 0 0 30 25 355 ] \Rightarrow \begin{matrix} R_1 &\rightarrow R_1 \\ R_2/2 &\rightarrow R_2 \\ R_3+48R_4 &\rightarrow R_3 \\ 2R_2+9R_4 &\rightarrow R_4 \end{matrix} \Rightarrow \left[ \begin{matrix} -64 & 16 & -4 & 1 & | & -265 \\ 0 & -9 & -12 & -13 & | & -109 \\ 0 & 0 & 20 & 5 & | & -125 \\ 0 & 0 & -30 & -25 & | & -355 \end{matrix} \right]

R 1 R 1 R 2 R 2 R 3 R 3 ( 2 R 4 + 3 R 3 ) / 35 R 4 [ 64 16 4 1 265 0 9 12 13 109 0 0 20 5 125 0 0 0 1 31 ] \Rightarrow \begin{matrix} R_1 &\rightarrow R_1 \\ R_2 &\rightarrow R_2 \\ R_3 &\rightarrow R_3 \\ -(2R_4+3R_3)/35 &\rightarrow R_4 \end{matrix} \Rightarrow \left[ \begin{matrix} -64 & 16 & -4 & 1 & | & -265 \\ 0 & -9 & -12 & -13 & | & -109 \\ 0 & 0 & 20 & 5 & | & -125 \\ 0 & 0 & 0 & 1 & | & 31 \end{matrix} \right]

R 1 R 1 R 2 R 2 ( R 3 5 R 4 ) / 20 R 3 R 4 R 4 [ 64 16 4 1 265 0 9 12 13 109 0 0 1 0 14 0 0 0 1 31 ] \Rightarrow \begin{matrix} R_1 &\rightarrow R_1 \\ R_2 &\rightarrow R_2 \\ (R_3-5R_4)/20 &\rightarrow R_3 \\ R_4 &\rightarrow R_4 \end{matrix} \Rightarrow \left[ \begin{matrix} -64 & 16 & -4 & 1 & | & -265 \\ 0 & -9 & -12 & -13 & | & -109 \\ 0 & 0 & 1 & 0 & | & -14 \\ 0 & 0 & 0 & 1 & | & 31 \end{matrix} \right]

R 1 R 1 ( R 2 + 12 R 3 + 13 R 4 ) / 9 R 2 R 3 R 3 R 4 R 4 [ 64 16 4 1 265 0 1 0 0 14 0 0 1 0 14 0 0 0 1 31 ] \Rightarrow \begin{matrix} R_1 &\rightarrow R_1 \\ -(R_2+12R_3+13R_4)/9 &\rightarrow R_2 \\ R_3 &\rightarrow R_3 \\ R_4 &\rightarrow R_4 \end{matrix} \Rightarrow \left[ \begin{matrix} -64 & 16 & -4 & 1 & | & -265 \\ 0 & 1 & 0 & 0 & | & -14 \\ 0 & 0 & 1 & 0 & | & -14 \\ 0 & 0 & 0 & 1 & | & 31 \end{matrix} \right]

( R 1 16 R 2 + 4 R 3 R 4 ) / 64 R 1 R 2 R 2 R 3 R 3 R 4 R 4 [ 1 0 0 0 2 0 1 0 0 14 0 0 1 0 14 0 0 0 1 31 ] \Rightarrow \begin{matrix} -(R_1-16R_2+4R_3-R_4)/64 &\rightarrow R_1 \\ R_2 &\rightarrow R_2 \\ R_3 &\rightarrow R_3 \\ R_4 &\rightarrow R_4 \end{matrix} \Rightarrow \left[ \begin{matrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & 0 & | & -14 \\ 0 & 0 & 1 & 0 & | & -14 \\ 0 & 0 & 0 & 1 & | & 31 \end{matrix} \right]

a = 2 b = 14 c = 14 d = 31 \Rightarrow a = 2 \quad b = -14 \quad c = - 14 \quad d = 31

p ( x ) = x 4 + 2 x 3 14 x 2 14 x + 31 \Rightarrow p(x) = x^4+2x^3-14x^2-14x+31

p ( 4 ) = 256 + 2 ( 64 ) 14 ( 16 ) 14 ( 4 ) + 31 = 256 + 128 224 56 + 31 = 135 \Rightarrow p(4) =256 + 2(64) - 14(16)-14(4)+31 = 256+128-224-56+31 = 135

Therefore, p ( 4 ) + 4 = 135 + 4 = 139 |p(4)+4| = 135+4 = \boxed{139}

Very complex... but very nice

Sriram Vudayagiri - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...