An algebra problem by Sean Ty

Algebra Level 5

Evaluate: 2013 + 276 2027 + 278 2041 + 280 2055 + . . . \displaystyle \sqrt{2013+276\sqrt{2027+278\sqrt{2041+280\sqrt{2055+...}}}}

This problem is not original.


The answer is 285.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Using Ramanujan teorem :

( x + n + a ) \displaystyle (x+n+a) = a x + ( n + a ) 2 + x a ( x + n ) + ( n + a ) 2 + ( x + n ) . . . . \displaystyle \sqrt{ax+(n+a)^{2}+x\sqrt {a(x+n)+(n+a)^{2}+(x+n)\sqrt{....}}}

you will get x=276, n=2, a=7 So, 2013 + 276 2027 + 278 2041 + 280 2055 + . . . \displaystyle \sqrt{2013+276\sqrt{2027+278\sqrt{2041+280\sqrt{2055+...}}}} = x+n+a=276+2+7=285

Sidharth Ghoshal
Nov 29, 2014

http://vixra.org/pdf/1310.0177v1.pdf

Can be used to generate solution

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...