One θ \theta , Two θ \theta , Three θ \theta , n θ n\theta

Geometry Level 2

Which of the following is an expression of sin ( n θ ) \sin (n\theta) , where n n is any real number?

n sin ( 1 n θ ) cos ( 1 n θ ) n\sin(\frac{1}{n}\theta) \cos(\frac{1}{n}\theta) n sin ( 1 2 θ ) cos ( 1 2 θ ) n\sin(\frac{1}{2}\theta) \cos(\frac{1}{2}\theta) 2 sin ( 1 n θ ) cos ( 1 n θ ) 2\sin(\frac{1}{n}\theta) \cos(\frac{1}{n}\theta) 2 sin ( n θ ) cos ( 1 2 n θ ) 2\sin (n\theta) \cos(\frac{1}{2}n\theta) 2 sin ( 1 2 n θ ) cos ( 1 2 n θ ) 2\sin(\frac{1}{2}n\theta) \cos(\frac{1}{2}n\theta) 2 sin ( 1 2 n θ ) cos ( n θ ) 2\sin(\frac{1}{2}n\theta) \cos (n\theta)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

sin α + sin β = 2 sin α + β 2 cos α β 2 \sin\alpha + \sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha -\beta}{2}

Let be α = n θ \alpha=n\theta and β = 0 \beta=0

sin ( n θ ) + sin ( 0 ) = 2 sin n θ + 0 2 cos n θ 0 2 = 2 sin n θ 2 cos n θ 2 = sin ( n θ ) \sin(n\theta) + \sin(0)=2\sin\frac{n\theta+0}{2}\cos\frac{n\theta -0}{2}=2\sin\frac{n\theta}{2}\cos\frac{n\theta}{2}=\sin(n\theta)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...