One too many

Find the last 8 digits of 1 + 11 + 111 + + 1 1 2014 ones 1+11+111+\ldots+\overbrace{1\ldots1}^{2014\text{ ones}}


The answer is 1234344.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Mathh Mathh
Jul 5, 2014

We're searching for 1 + 11 + 111 + + 1 1 2014 ones ( m o d 1 0 8 ) \displaystyle 1+11+111+\cdots+\overbrace{1\ldots1}^{2014 \text{ ones}}\pmod{10^8} .

1 + 11 + 111 + + 1 1 7 ones + 1 1 8 ones + + 1 1 2014 ones 1234567 + 2007 1 1 8 ones ( m o d 1 0 8 ) \displaystyle 1+11+111+\cdots+\overbrace{1\ldots1}^{7 \text{ ones}}+\overbrace{1\ldots1}^{8 \text{ ones}}+\cdots+\overbrace{1\ldots1}^{2014 \text{ ones}}\equiv 1 234 567+2007\cdot \overbrace{1\ldots1}^{8 \text{ ones}}\pmod{10^8}

Notice that 9 1 1 8 ones 1 ( m o d 1 0 8 ) \displaystyle 9\cdot\overbrace{1\ldots 1}^{8 \text{ ones}}\equiv -1\pmod {10^8} and 2007 = 223 9 2007=223\cdot 9 .

1234567 + 223 9 1 1 8 ones 1234567 + 223 ( 1 ) 1234344 ( m o d 1 0 8 ) \displaystyle 1 234 567 + 223\cdot9\cdot\overbrace{1\ldots 1}^{8 \text{ ones}}\equiv 1 234 567 + 223\cdot(-1)\equiv \boxed {1 234 344}\pmod {10^8}

Nice clean solution :)

A Former Brilliant Member - 6 years, 11 months ago

What is mod in it is it modulus

Manish Mayank - 6 years, 10 months ago

Log in to reply

Modular arithmetic.

mathh mathh - 6 years, 10 months ago

Congratulations. Out of the box thinking.

Niranjan Khanderia - 6 years, 10 months ago

last 8 digits u know... -_-

Farhan Willbenggaplekiperson Nguenhuh - 6 years, 10 months ago

Log in to reply

T h e 8 t h d i g i t i s 0 The \ 8th \ digit \ is \ 0

Majed Musleh - 6 years ago
Rasched Haidari
Jul 6, 2014

If you were to write all the numbers as a column (column addition), the last digit will be made up of a sum of 2014 lots of 1s. Hence, the last digit is a 4 with 201 being carried on to the next column. This column has one less 1, so the digit for this column is 2013+201=2214 which is another 4 with 221 being carried onto the next column. Again in this column there is one less 1 than the one before, so the digit for this column is 2012+221=2233 which is a 3 with 223 being carried onto the next column. So far the last three digits are 344. This process is repeated until you have the last 8 digits which are 01234344.

I like this (y)

Dip Mozahar - 6 years, 11 months ago
Sunil Pradhan
Jul 5, 2014

digit........... place ....................... Place value

1 × 2014 × 1 = .....................................2014

1 × 2013 × 10 = ................................20130

1 × 2012 × 100= .............................201200

1 × 2011 × 1000= .........................2011000

1 × 2010 × 10000= ....................20100000

1 × 2009 × 100000= ................200900000

1 × 2008 × 1000000= ...........2008000000

1 × 2007 × 10000000= ......20070000000

Total ........................ .............. 22301234344

Last 8 digits 01234344

good stuff :)

Nikhil Tandon - 6 years, 10 months ago

nice method...

Maheshgouda A Patil - 6 years, 9 months ago

T h e l a s t 8 d i g i t s o f t h e s u m w i l l b e t h e s a m e a s t h e l a s t 8 d i g i t s o f k = 0 8 ( 2014 k ) × 10 k = 222 , 90 1 234 , 344. \displaystyle The\quad last\quad 8\quad digits\quad of\quad the\quad sum\quad will\quad be\\ the\quad same\quad as\quad the\quad last\quad 8\quad digits\quad of\quad \\ \sum _{ k=0 }^{ 8 }{ (2014-k)\times { 10 }^{ k } } =222,901'234,344.

Very good thinking.

Niranjan Khanderia - 6 years, 10 months ago

S u m o f f i r s t 8 t e r m s i s 12345678 Sum~ of ~first~ 8~ terms~ is ~~~~~~~~~~~~~ 12345678
2014 8 = 2006 t e r m s r e m a i n a l l 11111111. 2014-8=2006~terms~ remain~ all ~~11111111. ~~~~~~~~
S o 1111111 6 = 66666666 1111111 2000 ( m o d 1 0 8 ) = 22222000 So ~~1111111*6 = 66666666```````1111111*2000 (mod 10^8)=22222000
S u m = 12345678 + 66666666 + 22222000 = 1234344 Sum~=~12345678+66666666+22222000=1234344


Dpk ­
Jul 9, 2014

Notice that the sum of the first 2 terms is 12, and the sum of the first 3 is 123. Based on the pattern, the sum of the first 8 terms is 12345678. Now we just have to add the rest of the terms after that. But since we only need the last 8 digits, we only take the last 8 digits of the remaining terms, which are all 11,111 ,111. We've added the first 8 terms already so there must be 2014 - 8 terms remaining. Muliply 11,111,111 by 2006, take only the last eight digits, add that to 12,345,678 and you have your answer

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...