The following integral ∭ S x y z d x d y d z where S = { ( x , y , z ) ∈ R 3 / x 2 + y 2 + z 2 ≤ 1 , x ≥ 0 , y ≥ 0 , z ≥ 0 } can be written as b a with a , b coprime positive integers. Enter a + b
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The integral with the given boundary can be written as ∫ 0 1 x d x { ∫ 0 β ( x ) y d y ( ∫ 0 α ( x , y ) z d z ) } where α ( x , y ) = 1 − x 2 − y 2 and β ( x ) = 1 − x 2 = ∫ 0 1 x d x { ∫ 0 β ( x ) y d y ( 2 1 − x 2 − y 2 ) } = ∫ 0 1 x d x { ( 2 1 − x 2 ) 2 − 8 ( 1 − x 2 ) 2 } = ∫ 0 1 x d x { 8 ( 1 − x 2 ) 2 } = [ − 4 8 ( 1 − x 2 ) 3 ] 0 1 = 4 8 1
⟹ a + b = 4 9
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Double and Triple Integrals
A sphere reminds of the Spherical Co ordinates , so let the equation of a sphere be x 2 + y 2 + z 2 = a 2
Let x = r sin θ cos ϕ , y = r sin θ sin ϕ , z = r cos θ be the set of substitutions. The Jacobian of the substitution is given by,
J = ∂ ( r , θ , ϕ ) ∂ ( x , y , z ) = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∂ r ∂ x ∂ r ∂ y ∂ r ∂ z ∂ θ ∂ x ∂ θ ∂ y ∂ θ ∂ z ∂ ϕ ∂ x ∂ ϕ ∂ y ∂ ϕ ∂ z ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = r 2 sin θ
Since we are integrating in the positive octant of the sphere so we have after substituing for x , y , z and d x d d y d z = J d r d θ d ϕ ,
∭ S x y z d x d y d z = ∫ 0 π / 2 ∫ 0 π / 2 ∫ 0 a r 5 sin 3 θ cos θ sin ϕ cos ϕ d r d θ d ϕ = ∫ 0 π / 2 sin 3 θ cos θ d θ ∫ 0 π / 2 sin ϕ cos ϕ d ϕ ∫ 0 a r 5 d r = ( 4 1 ) × ( 4 2 ) × ( 6 a 6 ) = 4 8 a 6
Here a = 1 which makes the answer 1 + 4 8 = 4 9