One triple integral.

Calculus Level 5

The following integral S x y z d x d y d z \iiint_{S} xyz \,dx \,dy \,dz where S = { ( x , y , z ) R 3 / x 2 + y 2 + z 2 1 , x 0 , y 0 , z 0 } S = \{(x,y,z) \in \mathbb R^3 \text{ / } x^2 + y^2 + z^2 \leq 1, x \ge 0, y\ge 0,z \ge 0\} can be written as a b \dfrac{a}{b} with a , b a, b coprime positive integers. Enter a + b a +b


The answer is 49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Double and Triple Integrals

A sphere reminds of the Spherical Co ordinates , so let the equation of a sphere be x 2 + y 2 + z 2 = a 2 x^2+y^2+z^2=a^2

Let x = r sin θ cos ϕ , y = r sin θ sin ϕ , z = r cos θ x=r\sin\theta\cos\phi,y=r\sin\theta\sin\phi,z=r\cos\theta be the set of substitutions. The Jacobian of the substitution is given by,

J = ( x , y , z ) ( r , θ , ϕ ) = x r x θ x ϕ y r y θ y ϕ z r z θ z ϕ = r 2 sin θ \displaystyle J=\dfrac{\partial(x,y,z)}{\partial(r,\theta,\phi)}=\begin{vmatrix} \dfrac{\partial{x}}{\partial{r}} & \dfrac{\partial{x}}{\partial{\theta}} & \dfrac{\partial{x}}{\partial{\phi}} \\ \dfrac{\partial{y}}{\partial{r}} & \dfrac{\partial{y}}{\partial{\theta}} & \dfrac{\partial{y}}{\partial{\phi}} \\ \dfrac{\partial{z}}{\partial{r}} & \dfrac{\partial{z}}{\partial{\theta}} & \dfrac{\partial{z}}{\partial{\phi}} \end{vmatrix}=r^2 \sin\theta

Since we are integrating in the positive octant of the sphere so we have after substituing for x , y , z x,y,z and d x d d y d z = J d r d θ d ϕ dx\;ddy\;dz=J\;dr\;d\theta\;d\phi ,

S x y z d x d y d z = 0 π / 2 0 π / 2 0 a r 5 sin 3 θ cos θ sin ϕ cos ϕ d r d θ d ϕ = 0 π / 2 sin 3 θ cos θ d θ 0 π / 2 sin ϕ cos ϕ d ϕ 0 a r 5 d r = ( 1 4 ) × ( 2 4 ) × ( a 6 6 ) = a 6 48 \displaystyle \begin{aligned} \iiint_{S}xyz\;dx\;dy\;dz&=\int_0^{\pi/2}\int_0^{\pi/2}\int_0^{a} r^5 \sin^3\theta\cos\theta\sin\phi\cos\phi\;dr\;d\theta\;d\phi \\ &= \int_0^{\pi/2} \sin^3\theta\cos\theta d\theta\;\int_0^{\pi/2}\sin\phi\cos\phi\;d\phi\;\int_0^{a}r^5\;dr \\ &=\left(\dfrac{1}{4}\right)\times \left(\dfrac{2}{4}\right)\times \left(\dfrac{a^6}{6}\right) \\ &=\dfrac{a^6}{48} \end{aligned}

Here a = 1 a=1 which makes the answer 1 + 48 = 49 \displaystyle \boxed{1+48=49}

Anirban Karan
Apr 19, 2017

The integral with the given boundary can be written as 0 1 x d x { 0 β ( x ) y d y ( 0 α ( x , y ) z d z ) } where α ( x , y ) = 1 x 2 y 2 and β ( x ) = 1 x 2 = 0 1 x d x { 0 β ( x ) y d y ( 1 x 2 y 2 2 ) } = 0 1 x d x { ( 1 x 2 2 ) 2 ( 1 x 2 ) 2 8 } = 0 1 x d x { ( 1 x 2 ) 2 8 } = [ ( 1 x 2 ) 3 48 ] 0 1 = 1 48 \begin{aligned}&\int_0^1x\,dx\Bigg\{\int_0^{\beta(x)}y\,dy\bigg(\int_0^{\alpha (x,y)} z\,dz\bigg)\Bigg\}\quad \text{where } \alpha (x,y)=\sqrt{1-x^2-y^2} \text{ and } \beta(x)=\sqrt{1-x^2}&\\ &=\int_0^1x\,dx\Bigg\{\int_0^{\beta(x)}y\,dy\bigg(\frac{1-x^2-y^2}{2}\bigg)\Bigg\}&\\ &=\int_0^1x\,dx\Bigg\{\bigg(\frac{1-x^2}{2}\bigg)^2- \frac{(1-x^2)^2}{8}\Bigg\}&\\ &=\int_0^1x\,dx\Bigg\{\frac{(1-x^2)^2}{8}\Bigg\}&\\ &=\Bigg[-\frac{(1-x^2)^3}{48}\Bigg]_0^1=\frac{1}{48}&\end{aligned}

a + b = 49 \implies \boxed{a+b=49}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...