If
and
,
then what is the value of ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
we have,
a + b + c = 0 ------------equation (i)
and
a² + b² + c² = 10 --------equation (ii)
we know,
(a + b + c)² = a² + b² + c² + 2 (ab + bc+ca) -----equation (iii)
Substituting respective values from equations (i) & (ii) to above equation, we get
0² = 10 + 2 (ab + bc+ca)
ab + bc+ca = -5
On squaring, we get
(ab + bc+ca)² = (-5)²
(ab)² + (bc)² + (ca)² + 2 (ab.bc + bc.ca + ca.ab) = 25 (Applying equation (iii) i.e. (a + b + c)² = a² + b² + c² + 2 (ab + bc+ca))
a²b² + b²c² + c²a² + 2 { abc (a + b + c) } = 25
a²b² + b²c² + c²a² + 2 {abc * 0 } = 25 (From equation (i) )
a²b² + b²c² + c²a² = 25
Taking equation (ii) and squaring it, we get
(a² + b² + c² )² = 10²
(a²)² + (b²)² + (c²)² + 2 (a².b² + b².c² + c².a²) = 100 (Again applying equation (iii) i.e. (a + b + c)² = a² + b² + c² + 2 (ab + bc+ca))
a⁴ + b⁴ + c⁴ + 2 (25) = 100 (From above substituting value of a²b² + b²c² + c²a² )
Hence,
a⁴ + b⁴ + c⁴ = 50