One Two Four

Level pending

If

a + b + c = 0 a+b+c=0 and

a 2 + b 2 + c 2 = 10 a^2+b^2+c^2=10 ,

then what is the value of a 4 + b 4 + c 4 a^4+b^4+c^4 ?


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Umes Stha
Aug 5, 2019

we have,

a + b + c = 0 ------------equation (i)

and

a² + b² + c² = 10 --------equation (ii)

we know,

(a + b + c)² = a² + b² + c² + 2 (ab + bc+ca) -----equation (iii)

Substituting respective values from equations (i) & (ii) to above equation, we get

0² = 10 + 2 (ab + bc+ca)

ab + bc+ca = -5

On squaring, we get

(ab + bc+ca)² = (-5)²

(ab)² + (bc)² + (ca)² + 2 (ab.bc + bc.ca + ca.ab) = 25 (Applying equation (iii) i.e. (a + b + c)² = a² + b² + c² + 2 (ab + bc+ca))

a²b² + b²c² + c²a² + 2 { abc (a + b + c) } = 25

a²b² + b²c² + c²a² + 2 {abc * 0 } = 25 (From equation (i) )

a²b² + b²c² + c²a² = 25

Taking equation (ii) and squaring it, we get

(a² + b² + c² )² = 10²

(a²)² + (b²)² + (c²)² + 2 (a².b² + b².c² + c².a²) = 100 (Again applying equation (iii) i.e. (a + b + c)² = a² + b² + c² + 2 (ab + bc+ca))

a⁴ + b⁴ + c⁴ + 2 (25) = 100 (From above substituting value of a²b² + b²c² + c²a² )

Hence,

a⁴ + b⁴ + c⁴ = 50

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...