One Two Three

Algebra Level 1

If x + 1 x = x 2 + 1 x 2 > 0 x + \dfrac1x = x^2 + \dfrac1{x^2} > 0 , what is x 3 + 1 x 3 x^3 + \dfrac1{x^3} ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x 3 + 1 x 3 = ( x + 1 x ) ( x 2 + 1 x 2 1 ) Given that x + 1 x = x 2 + 1 x 2 = ( x + 1 x ) ( x + 1 x 1 ) = x 2 + 1 x + 1 + 1 x 2 1 x = x 2 + 1 x 2 ( x + 1 x ) + 2 = 2 \begin{aligned} x^3 + \frac 1{x^3} & = \left(x + \frac 1x \right) \left(\color{#3D99F6}{x^2 + \frac 1{x^2}} - 1 \right) & \small \color{#3D99F6}{\text{Given that } x + \frac 1x = x^2 + \frac 1{x^2}} \\ & = \left(x + \frac 1x \right) \left(\color{#3D99F6}{x + \frac 1x} - 1 \right) \\ & = x^2 + 1 - x + 1 + \frac 1{x^2} - \frac 1x \\ & = \cancel{x^2 + \frac 1{x^2}} - \cancel{\left(x + \frac 1x\right)} + 2 \\ & = \boxed{2} \end{aligned}

U amaze me always.HATS OFF

Kaushik Chandra - 4 years, 7 months ago

Nice!!! (+1)

Noel Lo - 3 years, 10 months ago
T Sidharth
Sep 13, 2016

Let

x + 1 x = a x + \frac{1}{x} = a

So

( x + 1 x ) 2 = a 2 {(x + \frac{1}{x})}^{2} = a^2

x 2 + 1 x 2 = a 2 2 x^2 + \frac{1}{x^2} = a^2 - 2

From the question

( a 2 2 = a ) > 0 (a^2 -2 = a) > 0

a 2 a 2 = 0 a^2 -a -2 = 0

( a 2 ) ( a + 1 ) = 0 (a-2)(a+ 1) =0

We know a >0 a = 2 \text{We know a >0} \therefore a = 2

x + 1 x = 2 x + \frac{1}{x} = 2

So

( x 1 ) 2 = 0 x = 1 (x-1)^2 = 0 \implies x = 1

x 3 + 1 x 3 = 1 \therefore x^3 + \dfrac1{x^3} = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...