If sin x = − 1 3 cos x . Then, the value of
cos x + cos 2 x + cos 3 x sin x + sin 2 x + sin 3 x
can be expressed in the form b a , where a and b are positive coprime integers. What is the value of a + b ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
From 2nd to 3rd line, we use the sum-to-product identities cos A + cos B = 2 cos 2 A + B cos 2 A − B and sin A + sin B = 2 sin 2 A + B cos 2 A − B
Awesome solution :D
exactly same way..i did
This problem can be solved by using the basic trigonometric formulae. cos x + cos 2 x + cos 3 x sin x + sin 2 x + sin 3 x = ( cos x + cos 3 x ) + cos 2 x ( sin x + sin 3 x ) + sin 2 x = 2 cos ( 2 x + 3 x ) cos ( 2 x − 3 x ) + cos 2 x 2 sin ( 2 x + 3 x ) cos ( 2 x − 3 x ) + sin 2 x = 2 cos ( 2 4 x ) cos ( 2 − 2 x ) + cos 2 x 2 sin ( 2 4 x ) cos ( 2 − 2 x ) + sin 2 x = 2 ( cos 2 x ) ( cos ( − x ) ) + cos 2 x 2 ( sin 2 x ) ( cos ( − x ) ) + sin 2 x = cos 2 x ( 2 cos ( − x ) + 1 ) sin 2 x ( 2 cos ( − x ) + 1 ) = cos 2 x sin 2 x = tan 2 x = 1 − tan 2 x 2 tan x = 1 − cos 2 x sin 2 x 2 cos x sin x Now substitutins sin x = − 1 3 cos x ,we get = 1 − ( − 1 3 ) 2 2 × − 1 3 = 1 − 1 6 9 − 2 6 = − 1 6 8 − 2 6 = 8 4 1 3 Now, b a = 8 4 1 3 ⇒ a + b = 1 3 + 8 4 ⇒ a + b = 9 7 Therefore, the answer to this question is 9 7 .
tan x = cos x sin x ⇒ tan x = cos x − 1 3 cos x ⇒ tan x = − 1 3
cos x + cos 2 x + cos 3 x sin x + sin 2 x + sin 3 x = cos x + 2 cos 2 x − 1 + cos x ( 2 cos 2 x − 1 ) sin x + 2 sin x cos x + sin x ( 2 cos 2 x + 1 ) =
cos x + 2 cos 2 x − 1 + 2 cos x cos 2 x − cos x sin x ( 1 + 2 cos x + 2 cos 2 x + 1 ) = 2 cos 2 x − 1 + 2 cos x cos 2 x 2 sin x ( 1 + cos x + cos 2 x ) =
cos 2 x + 2 cos x cos 2 x 2 sin x ( 1 + cos x + 2 cos 2 x − 1 ) = cos 2 x ( 1 + 2 cos x ) 2 sin x ( cos x + 2 cos 2 x ) =
cos 2 x ( 1 + 2 cos x ) 2 sin x cos x ( 1 + 2 cos x ) = cos 2 x 2 sin x cos x = cos 2 x sin 2 x = tan 2 x
tan 2 x = 1 − tan 2 x 2 tan x
We know that sin x = − 1 3 cos x ⇒ tan x = − 1 3
1 − tan 2 x 2 tan x = 1 − 1 3 2 − 2 6 = 1 6 8 2 6 = 8 4 1 3
Solution is 1 3 + 8 4 = 9 7 .
numerator : sinx+sin2x+sin3x
by the formula - sinx+siny= sin(x+y)/2 cos(x-y)/2 { cos(-x)=cosx } for sinx+sin3x we get, 2sin2xcosx
so sin2x + 2sin2xcosx = sin2x(1+cosx)
Denominator : cosx+cos2x+cos3x
by the formula , cosx + cosy = 2cos(x+y)/2cos(x-y)/2 { cos(-x)=cosx } cosx+cos3x= 2cos2xcosx
cos2x+ 2cos2xcosx = cos2x(1+cosx)
now NR/ DR = sin2x(1+cosx)/cos2x(1+cosx)
we get , tan2x
WKT - tan2x= tanx/1-tan^2x
tanx = sinx/cosx
sinx=-13cosx (GVN)
there fore
tanx = -13 and Tan^2x = 169
substituting in tan2x we get 13/94 = a/b
there fore a+b = 97 (ANS)
We know that: sin(a+b)=sin(a) cos(b) +sin(b) cos(a) and cos(a+b)= cos(a) cos(b)-sin(a) sin(b). Since sin(-a) =-sin(a) and cos(-a)=cos(a) we also get: sin(a-b)=sin(a) cos(b) -sin(b) cos(a) and cos(a-b)= cos(a) cos(b)+sin(a) sin(b). Combing these inequalities we get that: sin(A) + sin(B) = 2* sin((A+B)/2)* cos((A-B)/2) and cos(A) + cos(B) = 2* cos((A+B)/2)* cos((A-B)/2), where A=a+b and B=a-b. So, sin(x) + sin(3x)= 2 sin(2x) cos(x) and sin(x)+sin(2x) +sin(3x)=(2 cos(x) +1) sin(2x). Also cos(x)+cos(3x)=2 cos(2x) cos(x) and cos(x) +cos(2x)+cos(3x)=(2 cos(x) +1) cos(2x). Finaly we get: sin(2x)/cos(2x) = (2 sin(x) cos(x)) / (cos(x)^2 -sin(x)^2) = -26*cos(x)^2/-168cos(x)^2 =26/168 = 13/84.
sin 2x (1+cos 2x)/cos 2x (1+cos 2x) = tan 2x = 2(-13)/(1-(-13)^2) = 13/84 = 97
Please explain the steps.
Log in to reply
oops!! made a typing mistake, it'll be
sin 2x (1+2cos x)/cos 2x (1+2cos x) = tan 2x
here we go, sin 3x + sin x + sin 2x
= 2 sin (3x+x)/2 cos (3x-x)/2 + sin 2x
= 2 sin 2x cos x + sin 2x
= sin 2x (1+ 2 cos x)
cos 3x +cos x +cos 2x
= 2 cos (3x+x)/2 cos(3x-x)/2 + cos 2x
= 2 cos 2x cos x + cos 2x
= cos 2x (1+ 2 cos x)
Combining the first and last terms of numerator and denominator, we get sinx + sin3x + sin2x / cosx + cos3x + cos2x using the formula for sinc + sind = 2sin((C+D)/2)cos((C-D)/2) and cosc + cosd = 2cos((C+D)/2)cos((C-D)/2) we get 2sin2xcosx + sin2x / 2cos2xcosx + cos2x = sin2x(2cosx +1) / cos2x(2cosx+1), which on cancellation gives sin2x/cos2x which is equal to tan2x. Now using the formula again for tan2x, we have tan2x= 2tanx/1-tan^2 x. From the question we have sinx=-13cosx which gives tanx = -13. Plugging the values for tanx in the obtained expression we have expr = 26/168 = 13/84. Hence the answer = 13 + 84 = 9 7
[sin(x)+sin(2x)+sin(3x)]/[cos(x)+cos(2x)+cos(3x)] = tan(2x). Notice that sin(x)=-13cos(x). tan(2x)=[2sin(x)cos(x)]/[cos^2(x)-sin^2(x)] tan(2x)=-26cos^2(x)/168cos^2(x)= 13/84 a=13 and b=84, a+b=97
Problem Loading...
Note Loading...
Set Loading...
sin x = − 1 3 cos x ⇒ cos x sin x = tan x = − 1 3 cos x + cos 2 x + cos 3 x sin x + sin 2 x + sin 3 x = ( cos 3 x + cos x ) + cos 2 x ( sin 3 x + sin x ) + sin 2 x = 2 cos 2 x cos x + cos 2 x 2 sin 2 x cos x + sin 2 x = cos 2 x ( 2 cos x + 1 ) sin 2 x ( 2 cos x + 1 ) = tan 2 x = 1 − tan 2 x 2 tan x = 1 − ( − 1 3 ) 2 2 ⋅ ( − 1 3 ) = 8 4 1 3