Ones and Zeros

Algebra Level 3

What is the sum of the digits of 1 + 11 + 101 + 1001 + 10001 + + 1 0 0 50 1 1+11+101+1001+10001+ \ldots+ 1\underbrace{0\cdots0}_{50}1 ?


The answer is 58.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

André Hucek
Oct 13, 2017

1 + 11 + 101 + 1001 + + 1 0 0 50 1 = 1 + ( 10 + 1 ) + ( 100 + 1 ) + ( 1000 + 1 ) + + ( 1 0 0 51 + 1 ) = 11 11 51 0 + 52 = 11 11 50 62 1+11+101+1001+ \cdots +1 \underbrace{0 \cdots 0}_{50}1 = 1+(10+1)+(100+1)+(1000+1)+ \cdots + (1 \underbrace{0 \cdots 0}_{51} +1) = \underbrace{11 \cdots 11}_{51}0 + 52 = \underbrace{11 \cdots 11}_{50}62 .

50 × 1 + 6 + 2 = 58 50 \times 1 +6+2 = \boxed{58} .

Hana Wehbi
Oct 14, 2017

N = 1 + 11 + 101 + 1001 + 10001 + . . . + 1 000...000 50 zeros 1 = n = 0 51 ( 1 0 n + 1 ) 1 = 1 0 52 1 10 1 + 52 1 = 999...999 52 nines 9 + 51 = 111...111 52 ones + 51 = 111...111 50 ones 62 \begin{aligned} N & = 1 + 11 + 101+ 1001+ 10001+... + 1\overbrace{000...000}^{\text{50 zeros}}1 \\ & = \sum_{n=0}^{51} \left(10^n + 1\right) - 1 \\ & = \frac {10^{52}-1}{10-1} + 52 - 1 \\ & = \frac {\overbrace{999...999}^{\text{52 nines}}} 9 + 51 \\ & = \overbrace{111...111}^{\text{52 ones}} + 51 \\ & = \overbrace{111...111}^{\text{50 ones}} 62 \end{aligned}

Therefore, the sum of the digits of N N is 50 × 1 + 6 + 2 = 58 50 \times 1 + 6 + 2 = \boxed{58} .

thank you for your solution, Hana !

André Hucek - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...