A geometry problem by Jim chale

Geometry Level 3

cos π 7 cos 2 π 7 + cos 3 π 7 = ? \large \cos \frac \pi 7-\cos \frac {2\pi} 7+ \cos \frac {3\pi} 7 = \ ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jim Chale
Jul 12, 2018

Let S = c o s π 7 c o s 2 π 7 + c o s 3 π 7 = c o s π 7 + c o s 3 π 7 + c o s 5 π 7 S=cos{\dfrac π 7}-cos{\dfrac {2π} 7} + cos{\dfrac {3π} 7} = cos{\dfrac π 7} + cos{\dfrac {3π} 7} + cos{\dfrac {5π} 7}

The key is using:

2 s i n a c o s b = s i n ( a + b ) s i n ( b a ) 2sin{a}cos{b}=sin{(a+b)}-sin{(b-a)}

Then we evaluate 2 S s i n π 7 2Ssin{\dfrac π 7}

(SPOILER ALERT. It telescopes...)

We have : 2 S s i n π 7 = s i n 2 π 7 + s i n 4 π 7 s i n 2 π 7 + s i n 6 π 7 s i n 4 π 7 = s i n 6 π 7 = s i n π 7 S = 1 2 \displaystyle 2Ssin{\dfrac π 7}=sin{\dfrac {2π} 7}+sin{\dfrac {4π} 7} - sin{\dfrac {2π} 7} + sin{\dfrac {6π} 7} - sin{\dfrac {4π} 7}= sin{\dfrac {6π} 7}=sin{\dfrac {π} 7} \Rightarrow S= \dfrac 1 2

Chew-Seong Cheong
Jul 12, 2018

x = cos π 7 cos 2 π 7 + cos 3 π 7 Note that cos ( π θ ) = cos θ = cos π 7 + cos 5 π 7 + cos 3 π 7 = 1 2 = 0.5 See proof below \begin{aligned} x & = \cos \frac \pi 7 - {\color{#3D99F6}\cos \frac {2\pi}7} + \cos \frac {3\pi} 7 & \small \color{#3D99F6} \text{Note that }\cos (\pi - \theta) = - \cos \theta \\ & = \cos \frac \pi 7 + {\color{#3D99F6}\cos \frac {5\pi}7} + \cos \frac {3\pi} 7 \\ & = \frac 12 = \boxed{0.5} & \small \color{#3D99F6} \text{See proof below} \end{aligned}

Click to see the proof .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...