Only if this could be "Series Demystified 8"

Algebra Level 5

n = 1 48 n 2 + n 1 ( n + 2 ) ! \large \displaystyle \sum_{n=1}^{48} \dfrac{n^2 + n - 1}{(n+2)!}

If the above summation equals to S S , find 50 ! ( 1 2 S ) 50!\left(\dfrac{1}{2} - S \right) .

Try my set .


The answer is 49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

This problem is very similar to Sanjeet sir's Series Demystified, hence the name.

It can found that:

n 2 + n 1 = n ( n + 1 ) 1 = n ( n + 2 ) ( n + 1 ) n^2 + n -1 = n(n+1) - 1 = n(n+2) - (n+1)

which is key to solving the question.

S = n = 1 48 n ( n + 2 ) ( n + 1 ) ( n + 2 ) ! = n = 1 48 n ( n + 1 ) ! n + 1 ( n + 2 ) ! S = \displaystyle \sum_{n=1}^{48} \dfrac{n(n+2) -(n+1)}{(n+2)!} = \sum_{n=1}^{48} \dfrac{n}{(n+1)!} - \dfrac{n+1}{(n+2)!}

This is of course a telescopic series

S = ( 1 2 ! 2 3 ! ) + ( 2 3 ! 3 4 ! ) + + ( 48 49 ! 49 50 ! ) S = \left(\dfrac{1}{2!} - \dfrac{2}{3!}\right) + \left(\dfrac{2}{3!} - \dfrac{3}{4!}\right) + \ldots + \left(\dfrac{48}{49!} - \dfrac{49}{50!} \right)

S = 1 2 ! 49 50 ! \Rightarrow S = \dfrac{1}{2!} - \dfrac{49}{50!}

Required Answer is 50 ! ( 1 2 S ) = 50 ! 49 50 ! = 49 50!\left(\dfrac{1}{2} - S\right) = 50!\dfrac{49}{50!} = \boxed{49}

n 2 + n 1 = ( n + 1 ) ( n + 2 ) 2 ( n + 2 ) + 1. n = 1 48 n 2 + n 1 ( n + 2 ) ! = n = 1 48 { ( n + 1 ) ( n + 2 ) ( n + 2 ) ! 2 n + 2 ( n + 2 ) ! + 1 ( n + 2 ) ! } = n = 1 48 { 1 n ! 1 ( n + 1 ) ! + 1 ( n + 2 ) ! 1 ( n + 1 ) ! } T h e s e a r e t w o t e l e s c o p i c s e r i e s e a c h w i t h o n e i n i t i a l t e r m , a n d a f i n a l t e r m . S = ( 1 1 49 ! ) + ( 1 50 ! 1 2 ! ) 50 ! ( 1 2 S ) = { 1 2 ( 1 2 50 + 1 ) } = 49. n^2+n-1=(n+1)(n+2)-2(n+2)+1.\\ \therefore~\displaystyle \sum_{n=1}^{48} \dfrac{n^2+n-1}{(n+2)!}=\sum_{n=1}^{48} \left\{\dfrac{(n+1)(n+2)}{(n+2)!}-2\dfrac{n+2}{(n+2)!}+\dfrac 1 {(n+2)!} \right \}\\ \displaystyle = \sum_{n=1}^{48} \left\{\dfrac 1 {n!}- \dfrac 1 {(n+1)!} + \dfrac 1 {(n+2)!} - \dfrac 1 {(n+1)!} \right \}\ \\ ~~~ These ~are ~two~ telescopic~ series~each~with~one~initial~term, ~and~a~final ~term.\\ S=\left (1-\dfrac 1 {49!} \right)~~+~~\left ( \dfrac 1 {50!} - \dfrac 1 {2!} \right) \\ ~~~~ \implies~50!(\frac 1 2-S)= \left \{\frac 1 2- (\frac 1 2- 50+ 1 ) \right\}=~\Large \color{#D61F06}{49}.

Niranjan Khanderia - 2 years, 1 month ago

8 of 8 Vishwak Srinivasan

Yeah. Lol. Maybe you could add this as a comment. Instead of a solution.

Vishwak Srinivasan - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...