Only one of two squares is known its length

Geometry Level pending

Based from figure above, ABCD \square \text{ABCD} and BEFG \square \text{BEFG} are two squares with point C \text{C} is lying on side BG \overline{\text{BG}} , point B \text{B} is lying on side AE \overline{\text{AE}} , AB = 8 cm \lvert \overline{\text{AB}} \rvert = 8 \text{ cm} , and AB < BE \lvert \overline{\text{AB}} \rvert < \lvert \overline{\text{BE}} \rvert .

Find [ ACF ] [\triangle \text{ACF}] in cm 2 \text{cm}^{2} .

Note that

  • AB \lvert \overline{\text{AB}} \rvert denotes the length of side AB \overline{\text{AB}} ,

  • [ ABC ] [\triangle \text{ABC}] denotes the area of triangle ABC \triangle \text{ABC} , and

  • the diagram isn't drawn to scale.


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Skye Rzym
Apr 27, 2017

Let BE = x cm \lvert \overline{\text{BE}} \rvert = x \text{ cm}

Then [ ACF ] = [ ABCD ] + [ BEFG ] ( [ ADC ] + [ CFG ] + [ AEF ] ) [\triangle \text{ACF}] = [\square \text{ABCD}] + [\square \text{BEFG}] - ([\triangle \text{ADC}] + [\triangle \text{CFG}] + [\triangle \text{AEF}]) = [ ABCD ] + [ BEFG ] [ ADC ] [ CFG ] [ AEF ] = [\square \text{ABCD}] + [\square \text{BEFG}] - [\triangle \text{ADC}] - [\triangle \text{CFG}] - [\triangle \text{AEF}] = AB 2 + BE 2 CD . DA 2 FG . GC 2 AE . EF 2 = \lvert \overline{\text{AB}} \rvert^{2} + \lvert \overline{\text{BE}} \rvert^{2} - \frac{\lvert \overline{\text{CD}} \rvert . \lvert \overline{\text{DA}} \rvert}{2} - \frac{\lvert \overline{\text{FG}} \rvert . \lvert \overline{\text{GC}} \rvert}{2} - \frac{\lvert \overline{\text{AE}} \rvert . \lvert \overline{\text{EF}} \rvert}{2} = ( 8 cm ) 2 + ( x cm ) 2 8 cm . 8 cm 2 x cm . ( x 8 ) cm 2 ( x + 8 ) cm . x cm 2 = (8 \text{ cm})^{2} + (x \text{ cm})^{2} - \frac{8 \text{ cm } . 8 \text{ cm}}{2} - \frac{x \text{ cm } . (x-8) \text{ cm}}{2} - \frac{(x+8) \text{ cm } . x \text{ cm}}{2} = 64 cm 2 + x 2 cm 2 32 cm 2 x 2 2 cm 2 + 4 x cm 2 x 2 2 cm 2 4 x cm 2 = 64 \text{ cm}^{2} + x^{2} \text{ cm}^{2} - 32 \text{ cm}^{2} - \frac{x^{2}}{2} \text{ cm}^{2} + 4x \text{ cm}^{2} - \frac{x^{2}}{2} \text{ cm}^{2} - 4x \text{ cm}^{2} = 32 cm 2 + x 2 cm 2 x 2 cm 2 = 32 \text{ cm}^{2} + x^{2} \text{ cm}^{2} - x^{2} \text{ cm}^{2} = 32 cm 2 = \boxed{32 \text{ cm}^{2}}

I get that the answer is independent of x x .

Is there a good way of phrasing the problem such that people do not solve it by fixing x = 8 x= 8 or x = 0 x = 0 ?

I like this problem, am thinking of featuring it.

Calvin Lin Staff - 4 years, 1 month ago

Maybe with a new statement : |AB|<|BG|.

SKYE RZYM - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...